Skip to main content
Log in

Antitumor and antiinflammatory constituents fromceltis sinensis

  • Article
  • Drug design
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Eight compounds were isolated from the methanolic extract of the twigs ofCeltis sinensis through repeated silica gel and Sephadex LH-20 column chromatography. Their chemical structures were elucidated as two triterpenoids, germanicol and epifriedelanol, two amide compounds, frans-N-caffeoyltyramine andcis-N-coumaroyltyramine, two lignan glycoside, pinoresinol glycoside and pinoresinol rutinoside, and two steroids by spectroscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, P. K., Carbon-13 NMR spectrum of flavonoids, Elsevier, New York, p. 341, (1989).

    Google Scholar 

  • Ahmad, V. U. and Rahman, A. U., Handbook of natural products data, vol. 2; Pentacyclic triterpenoids, Elsevier, New York, p. 566–567, (1994).

    Google Scholar 

  • Batirov, E., Kh., Matkarimov, A. D., Malikov, V. M., and Yagudaev, M. R., Versicoside-a novel lignan glycoside fromHaplophyll versicolor.Khim. Prir. Soedin., 5, 624–628 (1985).

    Google Scholar 

  • But, Paul P. H. Kimura, T. Guo, J. X., and Sung, C. K.,International collation of traditional and folk medicine: Part 2. World scientific, Singapore, p. 22–23, (1997).

    Google Scholar 

  • Chiba, M., Okabe, K., Hisada, S., Shima, K., Takemoto, T., and Nishibe, S., Elucidation of the structure of a new lignan glucoside fromOlea europaea by carbon-13 nuclear magnetic resonance spectroscopy.Chem. Pharm. Bull., 27, 2868–2873 (1979).

    CAS  Google Scholar 

  • Cho, J. Y., Kim, A. R., and Park, M. H., Lignans from the rhizomes ofCoptis japonica differentially act as antiinflammatory principles.Planta Med., 67, 312–316 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Do, J. C., Son, K. H., and Kang, S. S., Studies on the constituents of the roots ofRubus parvifolius (I). Isolation of (-)- epicatechin.Kor. J. Pharmacogn., 19, 170–173 (1988).

    CAS  Google Scholar 

  • Gonzalez, A. G., Mendoza, J. J., Ravelo, A. G., Luis J. G., and Dominguez, X. A., A18 oleanane triterpene fromSchaefferia cuneifolia.J. Nat. Prod., 52, 567–570 (1989).

    Article  CAS  Google Scholar 

  • Han, S. H., Lee, H. H., Lee, I. S., Moon Y. M., and Woo, E. R., A new phenolic amide fromLycium chinense Miller.Arch. Pharm. Res., 25, 433–437 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hong, N. D., Rho, Y. S., Kim, N. J., and Kim, J. S., Studies on the constituents of Ulmi Cortex.Kor. J. Pharmacogn., 21 (3) 201–204 (1990).

    CAS  Google Scholar 

  • Kim, D. K. and Lee, K., Inhibitory effect of trans-N-p-coumaroyl tyramine from the twigs ofCeltis sinensis on the acetylcholinesterase.Arch. Pharm. Res., 26, 735–738 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Koch, B. P., Harder, J., Lara, R. J., and Kattner, G., The effect of selective microbial degradation on the composition of mangrove derived pentacyclic triterpenols in surface sediments.Organic Geochem., 36, 273–285 (2005).

    Article  CAS  Google Scholar 

  • Kundu, J. K., Rouf, A. S., Hossain, M. N., Hasan, C. M., and Rashid, M. A., Antitumor activity of epifriedelanol fromVitis trifolia.Fitoterapia, 71, 577–579 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lajide, L., Escoubas, P., and Mizutani, J., Termite antifeedant activity inXylopia aethiopica.Phytochemistry, 40, 1105–1112 (1995).

    Article  CAS  Google Scholar 

  • Lee, S. J., Yun, Y. S., Lee, I. K., Ryoo, I. J., Yun, B. S., and Yoo, I. D., An antioxidant lignan and other constituents from the root bark ofHibiscus syriacus.Planta Med., 65, 658–660 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga, S., Tanaka, R., Takaoka, Y., In, Y., Ishida, T., Mawardi, R., and Ismail, H. B. M., 26-Nor-D:A-friedooleanane triterpenes fromPhyllanthus Watsonii.Phytochem., 32, 165–170 (1993).

    Article  Google Scholar 

  • Park, H. J., Lee, M. S., Lee, E., Choi, M. Y., Cha, B. C., Jung, W. T., and Young, H. S., Serum cholesterol lowering effect of triterpene acetate obtained fromLactuca indica.Kor. J. Pharmacogn., 26, 40–46 (1995).

    CAS  Google Scholar 

  • Park, S. W., Yook, C. S., and Lee, H. K., Chemical components from the fruits ofCrataegus pinnatifida var.psilosa. Kor. J. Pharmacogn., 25, 328–335 (1994).

    CAS  Google Scholar 

  • Pérez, C, Almonacid, L. N., Trujillo, J. M., González, A. G., Alonso, S. J., and Navarro, E., Lignans fromApollonias barbujana.Phytochemisty, 40, 1511–1513 (1995).

    Article  Google Scholar 

  • Tsukamoto, H, Hisada, S., and Nishibe, S., Lignans from bark ofFraxinus mandshurica var.japonica and F. japonica. Chem. Pharm. Bull., 32, 4482–4489 (1984).

    CAS  Google Scholar 

  • Wu, T. S., Ou, L. R, and Teng, C. M., Aristolochic acids, aristolactam alkaloids and amides fromAristolochia kankauensis.Phytochemistry, 36, 1063–1068 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Keun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.K., Lim, J.P., Kim, J.W. et al. Antitumor and antiinflammatory constituents fromceltis sinensis . Arch Pharm Res 28, 39–43 (2005). https://doi.org/10.1007/BF02975133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02975133

Key words

Navigation