Skip to main content
Log in

Preparative chromatographic separation: Simulated moving bed and modified chromatography methods

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chromatography has been the method of choice for the separation of complex biological mixtures for analytical purposes, particularly for the last fifty years. Its use has recently been extended to preparative separation where the productivity relative to the amount of resin and solvent used is a matter of concern. To overcome the inherent thermodynamic inefficiency of batch chromatography, as exemplified by the partial temporal usage of the resin and dilution of the product with the solvent, chromatography has been continually modified by separation engineers. Column switching and recycling represent some of the process modifications that have brought high productivity to chromatography. Recently, the simulated moving bed (SMB) method, which claims a high separation efficiency based on counter-current moving bed chromatography, has become the mainstay of preparative separation, especially in chiral separation. Accordingly, this paper reviews the current status of SMB, along with several chromatographic modification, which may be helpful in routine laboratory and industrial chromatographic practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dechow, F. J. (1989)Separation and Parification Techniques in Biotechnology. Noyes Publications, Mill Road, NJ, USA.

    Google Scholar 

  2. Berg, C. (1946) Hypersorption process for separation of light gases.Trans. A.I.Ch.E. 42: 665–680.

    Google Scholar 

  3. Broughton, D. E. and C. G. Gerhold (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets.U.S. Patent 2: 985–589.

    Google Scholar 

  4. Ching, C. B., and D. M. Ruthven (1985) An experimental study of a simulated counter-current adsorption system—I. Isothermal steady state operation.Chem. Eng. Sci. 40: 377–885.

    Google Scholar 

  5. Ganetsos, G., and P. E. Barker (1993) Semicontinuous Countercurrent Chromatographic Refiners. pp. 233–255. In: C. Ganetsos and P. E. Barker (eds.),Preparative and Production Scale Chromatography. Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  6. Bieser, H. J. and A. J. deRosset (1977) Continuous counter-current separation of saccharides with inorganic adsorptions. Paper presented at28 th Starch Convention. April 27–29. Detmodl, Germany.

  7. Ruthven, D. M., and C. B. Ching (1989) Counter-current and simulated counter-current adsorption separation processes.Chem. Eng. Sci. 44: 1011–1038.

    Article  CAS  Google Scholar 

  8. Ching, C. B., C. Ho, K. Hidajat, and D. M. Ruthven (1987) Experimental study of a simulated counter-current adsorption system—V. Comparison of resin zeolite adsorbents for fructose-glucose separation at high concentration.Chem. Eng. Sci. 42: 2547–2555.

    Article  CAS  Google Scholar 

  9. Ching, C. B., D. M. Ruthven, and R. Hidajat (1985) Experimental study of simulated counter-current adsorption system: III. Sorbex operation.Chem. Eng. Sci. 40: 1411–1417.

    Article  CAS  Google Scholar 

  10. Ching, C. B. and D. M. Ruthven (1984) Analysis of the performance of a simulated counter-current chromatographic system for fructose-glucose separation.Can. J. Chem. Eng. 62: 398–403.

    Article  CAS  Google Scholar 

  11. Ching, C. B., C. Ho, and D. M. Ruthven (1986) Improved adsorption process for production of high purity fructose.AIChE J. 32: 1876–1886.

    Article  CAS  Google Scholar 

  12. Ching, C. B. (1983) Theoretical model for simulation of the operation of the semi-continuous chromatographic refiner for separating glucose and fructose.J. Chem. Eng. Japan 16: 49–53.

    Article  CAS  Google Scholar 

  13. Negawa, M. and E. Shoji (1992) Optical resolution by simulated moving bed chromatography.J. Chromatogr. 590: 113–117.

    Article  CAS  Google Scholar 

  14. Ching, C. B., B. G. Lim, E. J. D. Lee, and S. C. Ng (1993) Preparative resolution of praziquantel enantiomers by simulated counter-current chromatography.J. Chromatogr. 624: 215–219.

    Article  Google Scholar 

  15. Nicoud, R. M., G. Fuchs, P. Adam, M. Bailly, E. Kusters, E. D. Antia, R. Reuille, and E. Schmid (1993) Preparative scale enantioseparation of a chiral epoxide: comparison of liquid chromatography and simulated moving bed adsorption technology.Chirality 5: 267–271.

    Article  CAS  Google Scholar 

  16. Schulte, M., and J. Strube (2001) Preparative enantioseparation by simulated moving bed chromatography.J. Chromatogr. A906: 399–416.

    Article  CAS  Google Scholar 

  17. Juza, M., M. Mazzotti, and M. Morbidelli (2000) Simulated moving-bed chromatography and its application to chirotechnology.Trends Biotechnol. 18: 108–118.

    Article  CAS  Google Scholar 

  18. Nicoud, R. M. (1999) The separation of optical isomers by simulated moving bed chromatography (part II).Pharm. Technol. Eur. 11: 28–34.

    CAS  Google Scholar 

  19. deRosset, A. J., R. W. Neuzil, and D. J. Korous (1976) Liquid column chromatography as a predictive tool for continuous countercurrent adsorptive separations.Ind. Eng. Chemt. Process Des. Dev. 15: 261–266.

    Article  CAS  Google Scholar 

  20. Szepesy, L. Zs., Sebestyen, I. Feher, and Z. Nagy (1975) Continuous liquid chromatography.J. Chromatogr. 108: 285.

    Article  CAS  Google Scholar 

  21. Hashimoto, K., Y. Shirai, and S. Adachi (1993) A simulated moving-bed adsorber for the separation of tricomponents.J. Chem. Eng. Japan 26: 52–56.

    Article  CAS  Google Scholar 

  22. Hatanaka, T., and M. Ishida (1992) A new process for multicomponent continuous separation by combining multiple liquid-chromatography column.J. Chem. Eng. Japan 25: 78–83.

    Article  CAS  Google Scholar 

  23. Ching, C. B., K. H. Chu, and K. Hidajat (1994) Multicomponent separation using a column-switching chromatographic method.AIChE J. 40: 1843–1849.

    Article  CAS  Google Scholar 

  24. Matsuda, F. (1996) Multicomponent separation by a novel simulated moving bed system.Proceedings of ACS Annual Meeting, March 24. New Orleans, USA.

  25. Kishihara, S., S. Fujii, H. Tamaki, K. B. Kim, N. Wakiuchi, and T. Yamamoto (1992) Continuous chromatographic-separation of sucrose, glucose and fructose using a simulated moving-bed adsorber.Int. Sugar. J. 94: 305–303.

    CAS  Google Scholar 

  26. Wooley, R., Z. Ma, and N.-H. L. Wang (1998) A nine-zone simulating moving bed for the recovery of glucose and xylose from biomass hydrolyzate.Ind. Eng. Chem. Res. 37: 3699–3709.

    Article  CAS  Google Scholar 

  27. Hritzko, B. J., Y. Xie, R. J. Wooley, Z. Ma, and N.-H. L. Wang (2001) Standing wave design of tandem and parallel SMBs for the recovery of a sugar from a ternary mixture.Proceedings of 7 th International Conference on Fundamental of Adsorption. May 20–25. Nagasaki, Japan.

  28. Hritzko, B. J., Y. Xie, R. J. Wooley, and N.-H. L. Wang (2001) Standing wave design of single and tandem SMB processes for multicomponent fractionation: Linear isotherm system. submitted toAIChEJ.

  29. Rossiter, G. J. (1996) ISEP & CSEP, a novel separation technique for process engineers.Proceedings of Presentation to the Israeli Mining Institution. December Tel. Aviv, Israel.

  30. Zhong, G., and G. Guiochon (1997) Simulated moving bed chromatography. Effects of axial dispersion and mass transfer under linear conditions.Chem. Eng. Sci. 52: 3117–3132.

    Article  CAS  Google Scholar 

  31. Storti, G., M. Mazzotti, S. Carra, and M. Morbidelli (1989) Optimal design of multicomponent counter-current adsorption adsorption separation processes involving nonlinear equilibria.Chem. Eng. Sci. 44: 1329–1345.

    Article  CAS  Google Scholar 

  32. Mazzotti, M., G. Storti, and M. Morbidelli (1997) Optimal operation of simulated moving bed units for nonlinear chromatographic separations.J. Chromatogr. A769: 3–24.

    Article  CAS  Google Scholar 

  33. Migliorini, C., M. Mazzotti, and M. Morbidelli (2000) Design of simulated moving bed multicomponent separations: Langmuir systems.Sep. Purif. Technol. 20: 79–96.

    Article  CAS  Google Scholar 

  34. Ma, Z., and N.-H. L. Wang (1997) Standing wave analysis of SMB chromatography: linear systems.AIChE J. 43: 2488–2508.

    Article  CAS  Google Scholar 

  35. Xie, Y., D.-J. Wu, Z. Ma, and N.-H. L. Wang (2000) Extended standing wave design method for simulated moving bed chromatography: linear systems.Ind. Eng. Chem. Res. 39: 1993–2005.

    Article  CAS  Google Scholar 

  36. Rhee, H. K., R. Aris, and N. R. Amundson (1971) Multicomponent adsorption in continuous countercurrent exchangers.Phil. Trans. Roy. Soc. London A269: 187–215.

    Article  Google Scholar 

  37. Mazzotti, M., C. Storti, and M. Morbidelli (1994) Robust design of countercurrent adsorption separation process. 2. Multicomponent systems.AIChE J. 40: 1825–1842.

    Article  CAS  Google Scholar 

  38. Mazzotti, M., R. Baciocchi, G. Storti, and M. Morbidelli (1996) Napor-phase SMB adsorptive separation of linear/nonlinear paraffins.Ind. Eng. Chem. Res. 35: 2313–2321.

    Article  CAS  Google Scholar 

  39. Miglionini, C., M. Wendlinger, M. Mazzotti, and M. Morbidelli (2001) Temperature gradient operation of a simulated moving bed unit.Ind. Eng. Chem. Res. 40: 2606–2617.

    Article  CAS  Google Scholar 

  40. Wankat, P. C. (1994)Rate-Controlled Separations 1st ed., pp. 239–277. Blackie Academic & Professional, Glasgow, UK.

    Google Scholar 

  41. Wu, D.-J., Y. Xie, Z. Ma, and N.-H. L. Wang (1998) Design of simulated moving bed chromatography for amino acid separations.Ind. Eng. Chem. Res. 37: 4023–4035.

    Article  CAS  Google Scholar 

  42. Mallmann, T., B. D. Burris, Z. Ma, and N.-H. L. Wang (1998) Standing wave design of nonlinear SMB systems for fructose purification.AIChE J. 44: 2628–2646.

    Article  CAS  Google Scholar 

  43. Hotier, G. (1996) Physically meaningful modelling of the 8-zone and 4-zone simulated moving bed processes.AIChE J. 42: 144–160.

    Article  Google Scholar 

  44. Azevedo, D. C. S., and A. E. Rodrigues (1999) Design of a simulated moving bed in the presence of mass-transfer resistances.AIChE J. 45: 956–966.

    Article  CAS  Google Scholar 

  45. Genetsos, G., and P. E. Banker (1993)Preparative and Production Scale Chromatography. Chapter VI. Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  46. Lu, Z. P., and C. B. Ching (1997) Dynamics of simulated moving-bed adsorption separation processes.Sep. Sci. Technol. 32: 1993–2010.

    Article  CAS  Google Scholar 

  47. Pais, L. S., J. M. Loureiro, and A. E. Rodrigues (1998) Modeling strategies for enantiomers separation by SMB chromatography.AIChE J. 44: 561–569.

    Article  CAS  Google Scholar 

  48. Giddings, J. C. (1965)Dynamics of Chromatography. pp. 13–94. Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  49. Barker, P. E., K. England, and G. Vlachogiannis (1983) Mathematical model for the fractionation of dextran on a semi-continuous counter-current simulated moving bed chromatograph.Chem. Eng. Res. Des. 61: 241–247.

    CAS  Google Scholar 

  50. Hashimoto, K., S. Adachi, H. Noujima, and A. Maruyama (1983) Models for separation of glucose-fructose mixture using a simulated moving bed adsorber.J. Chem. Eng. Japan 16: 400–406.

    Article  CAS  Google Scholar 

  51. Morbidelli, M., G. Storti, R. Paludetto, and S. Carra (1987) Mathematical models of moving beds and simulated moving beds for adsorption separation: analysis and comparison, pp. 411–420. In: Liapis, A. I. (eds.)Fundamentals of Adsorption. Engineering Foundation, New York, NY, USA.

    Google Scholar 

  52. Hritzko, B. J. D., D. Walker, and N.-H. L. Wang (2000) Design of a carousel process for cesium removal using crystalline silicotitanate.AIChE J. 46: 552–564.

    Article  CAS  Google Scholar 

  53. Dünnebier, G., J. Fricke, and K.-U. Klatt (2000) Optimal design and operation of simulated moving bed chromotographic reactors.Ind. Eng. Chem. Res. 39: 2290–2304.

    Article  CAS  Google Scholar 

  54. Wankat, P. C. (1990)Rate-Controlled Separations. Elsevier Applied Science, NY, USA.

    Google Scholar 

  55. Wankat, P. C. (1986).Large-Scale Adsorption and Chromatography, Vol. II CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  56. Maeda, T., S. Sumi, K. Hayashi, K. Kidouchi, T. Owaki, H. Togari, S. Fujimoto, and Y. Wada (1999) Automated determination of 5-fluorouracil and its metabolite in urine by HPLC with column switching.J. Chromatogr. B731: 267–273.

    Article  CAS  Google Scholar 

  57. Lee, S. H., K. H. Kim, Y. C. Lee, and S. T. Kim (1995) Micro-determination ofd-amino acids in milk by using column switching.J. Kor. Chem. Soc. 39: 257.

    CAS  Google Scholar 

  58. Lee, J. S., H. Lee, H. S. Lee, and K. C. Lee (1994) On-line trace enrichment for the determination of insulin in biological sample using reversed-phase HPLC with column switching.Arch. Phar. Res. 17: 360.

    Article  CAS  Google Scholar 

  59. Grosserhode, C., H. G. Kicinski, and A. Kettrup (1990) Column switching technique for group-type separation of different PAH classes by use of C-18-modified silica and polystyrene packings.J. Liq. Chromatogr. 13: 3415–3438.

    Article  CAS  Google Scholar 

  60. Conder, J. R., and M. K. Shingari (1973) Throughput and band overlap in production and preparative chromatography.Chromatogr. Sci. 11: 525.

    CAS  Google Scholar 

  61. Bailly, M., and D. Tondeur (1982) Recycle optimization in non-linear productive chromatography.Chem. Eng. Sci. 37: 1199–1212.

    Article  CAS  Google Scholar 

  62. Agilent Technologies. HPLC sample peak recycler, http: //www.le-ms.com/peakrecycler.htm

  63. Chang, W.-J. and Y.-M. Koo (1999) On-line recovery of large molecules from mixtures using reciprocating size exclusion chromatography.Biotechnol. Tech. 13: 211–214.

    Article  CAS  Google Scholar 

  64. Kim, Y.-M., and Y.-M. Koo (2001) Separation of mixed solutes using reciprocating size exclusion chromatography: computer simulation based upon experimental parameters. Submitted toKor. J. Chem. Eng.

  65. Choi, S.-W., M.-H. Yoon, and Y.-M. Koo (1993) Mechanism of simultaneous solutes separation and concentration by size exclusion cyclic separation.Kor. J. Chem. Eng. 10: 49–55.

    Article  CAS  Google Scholar 

  66. Chitumbo, K., and W. Brown (1973) Gel chromatography: The effect of temperature on partitioning.J. Chromatogr. 87: 17–27.

    Article  CAS  Google Scholar 

  67. Koo, Y.-M., and P. C. Wankat (1985) Size exclusion parametric pumping.Ind. Eng. Chem. Fundam. 24: 108–112.

    Article  CAS  Google Scholar 

  68. Lindquest, L. O., and K. W. Williams (1978) Aspects of whey processing by gel filtration.Dairy Ind. 38: 459.

    Google Scholar 

  69. Bailly, M., and D. Tondeur (1981) Two-way chromatography: Flow reversal in nonlinear preparative liquid chromatography.Chem. Eng. Sci. 36: 455–469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Mo Koo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Koo, YM. & Wang, NH.L. Preparative chromatographic separation: Simulated moving bed and modified chromatography methods. Biotechnol. Bioprocess Eng. 6, 363–375 (2001). https://doi.org/10.1007/BF02932317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932317

Keywords

Navigation