Skip to main content
Log in

Intracellular colonization ofRhododendron andVaccinium roots byCenococcum geophilum, Geomyces pannorum andMeliniomyces variabilis

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Fourin vitro experiments were set up to verify the colonization potential of ectomycorrhizal (EcM)Cenococcum geophilum Fr. (strain CGE-4), saprotrophicGeomyces pannorum (Link)Sigler & Carmichael (GPA-1) and a frequent root-associated, potentially ericoid mycorrhiza (ErM)-formingMeliniomyces variabilis Hambleton & Sigler (MVA-1) in roots ofRhododendron andVaccinium. A typical ErM fungus,Rhizoscyphus ericae (Read)Zhuang & Korf (RER-1), was included for comparison. All fungal strains intracellularly colonized rootedVaccinium microcuttings: GPA-1 occasionally produced hyphal loops similar to ErM, MVA-1 and RER-1 exhibited a typical ErM colonization pattern. CGE-4 hyphae grew vigorously on and around newly formed roots and rarely penetrated turgescent rhizodermal cells forming intracellular loose loops. Rooting ofRhododendron sp. microcuttings was not promoted by any fungal strain except CGE-4, which also promoted the most vigorous growth ofRhododendron ponticum L. seedlings. The widespread EcM fungusC. geophilum has a potential to colonize non-EcM roots and support their development which may influence overall growth of ericaceous plants. As shown forG. pannorum, structures resembling ErM may be formed by fungi that are to date not regarded as ericoid mycorrhizal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DSE:

dark septate endophytes

EcM:

ectomycorrhiza(l)

ErM:

ericoid mycorrhiza(l)

CGE:

Cenococcum geophilum

GPA:

Geomyces pannorum

MMN:

medium of Melin-Norkrans

MMR:

medium according to Mitchell and Read

MVA:

Meliniomyces variabilis

References

  • Allen T.R., Millar T., Berch S.M., Berbee M.L.: Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots.New Phytol.160, 255–272 (2003).

    Article  CAS  Google Scholar 

  • Bergero R., Perotto S., Girlanda M., Vidano G., Luppi A.M.: Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex).Mol.Ecol.9, 1639–1649 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bonfante-Fasolo P.: Occurrence of a basidiomycete in living cells of mycorrhizal hair roots ofCalluna vulgaris.Trans.Brit.Mycol.Soc.75, 320–325 (1980).

    Google Scholar 

  • Bougoure D.S., Cairney J.W.G.: Fungi associated with hair roots ofRhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods.Environ.Microbiol.7, 1743–1754 (2005a).

    Article  PubMed  CAS  Google Scholar 

  • Bougoure D.S., Cairney J.W.G.: Assemblages of ericoid mycorrhizal and other root-associated fungi fromEpacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots.Environ.Microbiol.7, 819–827 (2005b).

    Article  PubMed  CAS  Google Scholar 

  • Cairney J.W.G., Meharg A.A.: Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions.Eur.J.Soil Sci.54, 735–740 (2003).

    Article  Google Scholar 

  • Dalpé Y.: Axenic synthesis of ericoid mycorrhiza inVaccinium angustifoliumAit. byOidiodendron species.New Phytol.103, 391–396 (1986).

    Article  Google Scholar 

  • Dalpé Y.: Ericoid mycorrhizal fungi in theMyxotrichaceae andGymnoascaceae.New Phytol.113, 523–527 (1989).

    Article  Google Scholar 

  • Dalpé Y.: Statut endomycorhizien du genreOidiodendron.Can.J.Bot.69, 1712–1714 (1991).

    Article  Google Scholar 

  • Dighton J., Coleman D.C.: Phosphorus relations of roots and mycorrhizas ofRhododendron maximum L. in the southern Appalachians, North Carolina.Mycorrhiza1, 175–184 (1992).

    Article  Google Scholar 

  • Domsch K.H., Gams W., Anderson T.H.:Compendium of Soil Fungi, Vol. 1. Academic Press, London-New York-Toronto-Sydney-San Francisco 1980.

    Google Scholar 

  • Eccher T., Noé N.: Influence of ericoid endomycorrhizae inoculatedin vitro on rooting and early growth of micropropagated plants ofVaccinium corymbosum.Acta Hort.574, 373–378 (2002).

    Google Scholar 

  • Gay G.: Effect of the ectomycorrhizal fungusHebeloma hiemale on adventitious root formation in derootedPinus halepensis shoot hypocotyls.Can.J.Bot.68, 1265–1270 (1990).

    Google Scholar 

  • Gianni C., Caretta G., Romano C.: Skin infection due toGeomyces pannorum var.pannorum.Mycoses46, 430–432 (2003).

    Article  PubMed  Google Scholar 

  • Hambleton S., Egger K.N., Currah R.S.: The genusOidiodendron: species delimitation and phylogenetic relationship based on nuclear ribosomal DNA analysis.Mycologia90, 854–869 (1998).

    Article  CAS  Google Scholar 

  • Hambleton S., Sigler L.:Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities toRhizoscyphus ericae (= Hymenoscyphus ericae), Leotiomycetes.Stud.Mycol.53, 1–27 (2005).

    Google Scholar 

  • Johnson N.C., Graham J.H., Smith F.A.: Functioning of mycorrhizal associations along the mutualism-parasitism continuum.New Phytol.135, 575–585 (1997).

    Article  Google Scholar 

  • Jones M.D., Smith S.E.: Exploring functional definitions of mycorrhizas — are mycorrhizas always mutualism?Can.J.Bot.82, 1089–1109 (2004).

    Article  Google Scholar 

  • Jumpponen A.: Dark septate endophytes — are they mycorrhizal?Mycorrhiza11, 207–211 (2001).

    Article  Google Scholar 

  • Lacourt I., Girlanda M., Perotto S., Del Pero M., Zuccon D., Luppi A.M.: Nuclear ribosomal sequence analysis ofOidiodendron: towards a redefinition of ecologically relevant species.New Phytol.149, 565–576 (2001).

    Article  CAS  Google Scholar 

  • Mandyam K., Jumpponen A.: Seeking the elusive function of the root-colonizing dark septate endophytic fungi.Stud.Mycol.53, 173–189 (2005).

    Article  Google Scholar 

  • Marx D.H.: The influence of ectotrophic mycorrhizal fungi on the resistance to pathogenic infections. II. Production, identification, and biological activity of antibiotics produced byLeucopaxillus cerealis var.piceina.Phytopathology59, 411–417 (1969).

    PubMed  CAS  Google Scholar 

  • Midgley D.J., Chambers S.M., Cairney W.G.: Distribution of ericoid mycorrhizal endophytes and root-associated fungi in neighboringEricaceae plants in the field.Plant & Soil259, 137–151 (2005).

    Article  Google Scholar 

  • Mitchell D.T., Read D.J.: Utilization of inorganic and organic phosphates by the mycorrhizal endophytes ofVaccinium macrocarpon andRhododendron ponticum.Trans.Brit.Mycol.Soc.76, 255–260 (1981).

    CAS  Google Scholar 

  • Murashige T., Skoog F.: A revised medium for rapid growth and bio-assays with tobacco tissue cultures.Physiol.Plant.15, 473–497 (1962).

    Article  CAS  Google Scholar 

  • Niemi K., Häggman H.:Pisolithus tinctorius promotes germination and forms mycorrhizal structures in Scots pine somatic embryosin vitro.Mycorrhiza12, 263–267 (2002).

    Article  PubMed  Google Scholar 

  • Niemi K., Vuorinen T., Ernstsen A., Häggman H.: Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttingsin vitro.Tree Physiol.22, 1231–1239 (2002).

    PubMed  CAS  Google Scholar 

  • Nylund J.E.: The regulation of ectomycorrhiza formation — carbohydrate and hormone theories revised.Scand.J.Forest Res.3, 465–470 (1988).

    Article  Google Scholar 

  • Pearson V., Read D.J.: The biology of mycorrhiza in theEricaceae. I. The isolation of the endophyte and synthesis of mycorrhiza in aseptic culture.New Phytol.72, 371–379 (1973).

    Article  Google Scholar 

  • Perotto S., Girlanda M., Martino E.: Ericoid mycorrhizal fungi: some new perspectives on old acquaintances.Plant & Soil244, 41–53 (2002).

    Article  CAS  Google Scholar 

  • Read D.J., Leake J.R., Perez-Moreno J.: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes.Can.J.Bot.82, 1243–1263 (2004).

    Article  CAS  Google Scholar 

  • Rudawska M.L., Kieliszewska-Rokicka B.: Mycorrhizal formation byPaxillus involutus strains in relation to their IAA-synthesizing activity.New Phytol.137, 509–517 (1997).

    Article  CAS  Google Scholar 

  • Seviour R.J., Willing R.R., Chilvers G.A.: Basidiocarps associated with ericoid mycorrhizas.New Phytol.72, 381–385 (1973).

    Article  Google Scholar 

  • Stoyke G., Currah R.S.: Resynthesis in pure culture of a common subalpine fungus-root association usingPhialocephala fotinii andMenziesia ferruginea (Ericaceae).Arct.Alp.Res.25, 189–193 (1993).

    Article  Google Scholar 

  • Vohník M., Albrechtová J., Vosátka M.: The inoculation withOidiodendron maius andPhialocephala fortinii alters phosphorus and nitrogen uptake, foliar C:N ratio and root biomass distribution inRhododendron cv. Azurro.Symbiosis40, 87–96 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vohník.

Additional information

This study was financed by theGrant Agency of the Charles University, Prague (project GAUK 144/2005/B-BIO/PrF), the COST E38.003 project 1P05OC081, and is a part of the research project AV 0Z 6005 0516 of theInstitute of Botany, Academy of Sciences of the Czech Republic. The first author was supported by theGrant Agency of the Czech Republic (project GACR 206/03/H137).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vohník, M., Fendrych, M., Albrechtová, J. et al. Intracellular colonization ofRhododendron andVaccinium roots byCenococcum geophilum, Geomyces pannorum andMeliniomyces variabilis . Folia Microbiol 52, 407–414 (2007). https://doi.org/10.1007/BF02932096

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932096

Keywords

Navigation