Skip to main content
Log in

Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinantZymomonas

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The five-carbon sugard-xylose is a major component of hemicellulose and accounts for roughly one-third of the carbohydrate content of many lignocellulosic materials. The efficient fermentation of xylose-rich hemicellulose hydrolyzates (prehydrolyzates) represents an opportunity to improve significantly the economics of large-scale fuel ethanol production from lignocellulosic feedstocks. The National Renewable Energy Laboratory (NREL) is currently investigating a simultaneous saccharification and cofermentation (SSCF) process for ethanol production from biomass that uses a dilute-acid pretreatment and a metabolically engineered strain ofZymomonas mobilis that can coferment glucose and xylose. The objective of this study was to establish optimal conditions for cost-effective seed production that are compatible with the SSCF process design.

Two-level and three-level full factorial experimental designs were employed to characterize efficiently the growth performance of recombinantZ. mobilis CP4:pZB5 as a function of nutrient level, pH, and acetic acid concentration using a synthetic hardwood hemicellulose hydrolyzate containing 4% (w/v) xylose and 0.8% (w/v) glucose. Fermentations were run batchwise and were pH-controlled at low levels of clarified corn steep liquor (cCSL, 1-2% v/v), which were used as the sole source of nutrients. For the purpose of assessing comparative fermentation performance, seed production was also carried out using a “benchmark” yeast extract-based laboratory medium. Analysis of variance (ANOVA) of experimental results was performed to determine the main effects and possible interactive effects of nutrient (cCSL) level, pH, and acetic acid concentration on the rate of xylose utilization and the extent of cell mass production. Results indicate that the concentration of acetic acid is the most significant limiting factor for the xylose utilization rate and the extent of cell mass production; nutrient level and pH exerted weaker, but statistically significant effects. At pH 6.0, in the absence of acetic acid, the final cell mass concentration was 1.4 g dry cell mass/L (g DCM/L), but decreased to 0.92 and 0.64 g DCM/L in the presence of 0.5 and 1.0% (w/v) acetic acid, respectively. At concentrations of acetic acid of 0.75 (w/v) or lower, fermentation was complete within 1.5 d. In contrast, in the presence of 1.0% (w/v) acetic acid, 25% of the xylose remained after 2 d. At a volumetric supplementation level of 1.5–2.0% (v/v), cCSL proved to be a cost-effective single-source nutritional adjunct that can support growth and fermentation performance at levels comparable to those achieved using the expensive yeast extract-based laboratory reference medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, J. D. (1988),Chem. Eng. Prog. 84, 62–74.

    CAS  Google Scholar 

  2. Wright, J. D., Wyman, C. E., and Grohman, K. (1988),Appl. Biochem. Biotechnol. 18, 75–90.

    CAS  Google Scholar 

  3. Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.

    Google Scholar 

  4. Lynd, L. R. (1989),Adv. Biochem. Eng. Biotechnol. 38, 1–52.

    CAS  Google Scholar 

  5. Lynd, L. R., Cushman, J. H., Nichols, R. J. and Wyman, C. E. (1991),Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  6. Keim, C. R. (1983),Enzyme Microbiol. Technol. 5, 103–114.

    Article  CAS  Google Scholar 

  7. Jeffries, T. W. (1981),Biotechnol. Bioeng., Symp. 11, 315–324.

    CAS  Google Scholar 

  8. Jeffries, T. W. (1983),Adv. Biochem. Eng. Biotechnol. 27, 1–32.

    CAS  Google Scholar 

  9. Jeffries, T. W. (1990), inYeast: Biotechnology and Biocatalysis, Verachtert, H. and De Mot, R., eds., Marcel Dekker, New York, pp. 349–394.

    Google Scholar 

  10. Hahn-Hägerdahl, B., Hallborn, J., Jeppson, H., Olsson, L., Skoog, K., and Walfridson, M. (1993), inBioconversion of Forest and Agricultural Plant Residues Saddler, J. N., ed., C.A.B. International, Wallingford, UK, pp. 231–290.

    Google Scholar 

  11. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem.Biotechnol. 20/21, 391–401.

    Google Scholar 

  12. Hinman, N. D., Schell, D. J, Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992),Appl. Biochem. Biotechnol. 34/35, 639–649.

    Google Scholar 

  13. Lynd, L. R. (1990),Appl. Biochem. Biotechnol. 24/25, 695–719.

    Google Scholar 

  14. Picataggio, S. K., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Zhang, M. (1996),Seventeenth Symposium on Biotechnology for Fuels & Chemicals (Paper #9).

  15. Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in:Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC,ACS Symposium Series 566, pp. 342–362.

    Google Scholar 

  16. Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. K. (1995),Appl. Biochem. Biotechnol. 51/52, 527–536.

    Google Scholar 

  17. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  18. Lawford, G. R., Lavers, B. H., Good, D., Charley, R., Fein, J., and Lawford, H. G. (1982), inInternational Symposium on Ethanol from Biomass, Duckworth, H. E. and Thompson, E. A., eds., Royal Society of Canada, Winnipeg, Canada, pp. 482–507.

    Google Scholar 

  19. Lawford, H. G. (1988),Proc. VIII Int'l Symp. on Alcohol Fuels, New Energy Development Organization, Tokyo, pp. 21–27.

    Google Scholar 

  20. Swings, J. and DeLey, J. (1977),Bacteriol. Rev. 41, 1–46.

    CAS  Google Scholar 

  21. Montenecourt, B.S. (1985), inBiology of Industrial Microorganisms, Demain, A. L. and Simon, N. A., eds., Benjamin/Cummings, Meno Park, CA, pp. 216–287.

    Google Scholar 

  22. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993),Crit. Rev. Biotechnol. 13, 57–98.

    Article  CAS  Google Scholar 

  23. Lawford, H. G. (1988),Appl. Biochem. Biotechnol. 17, 203–219.

    Article  CAS  Google Scholar 

  24. Lawford, H. G. and Ruggiero, A. (1990),Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  25. Bringer, S., Sahm, H., and Swyzen, W. (1984),Biotechnol. Bioeng. Symp. No. 14, 311–319.

  26. Rodriguez, E. and Callieri, D. A. S. (1986),Biotechnol. Lett. 8, 745–748.

    Article  CAS  Google Scholar 

  27. Doelle, M. B., Greenfield, P. F., and Doelle, H. W. (1990),Proc. Biochem. 25, 151–156.

    CAS  Google Scholar 

  28. Beavan, M., Zawadzki, B., Droiniuk, R., Fein, J. E., and Lawford, H. G. (1989),Appl. Biochem. Biotechnol. 20/21, 319–326.

    Google Scholar 

  29. Lee, G. M., Kim, C. H., Lee, K. J., Zainal Abidin Mohd, Y., Han, M. H., and Rhee, S. K. (1986),J. Ferment Technol. 64, 293–297.

    Article  CAS  Google Scholar 

  30. Parekh, S. R., Parekh, R. S., and Wayman, M. (1989),Proc. Biochem. 24, 85–91.

    Google Scholar 

  31. Park, S. C., Kademi, A., and Baratti, J. C. (1993),Biotechnol. Lett. 15(11), 1179–1184.

    Article  CAS  Google Scholar 

  32. Liu, C.-Q., Goodman, A. E., and Dunn, N. W. (1988),J. Biotechnol. 7, 61.

    Article  CAS  Google Scholar 

  33. Feldman, S. D., Sahm, H., and Sprenger, G. A. (1992),Appl. Microbiol. Biotechnol. 38, 354.

    Article  Google Scholar 

  34. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995),Science 267, 240–243.

    Article  CAS  Google Scholar 

  35. Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996),Appl. Biochem. Biotechnol. 57/58, 641–661.

    Google Scholar 

  36. Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982),Appl. Environ. Microbiol. 44(2), 496–498.

    CAS  Google Scholar 

  37. Fein, J. E., Charley, R. C., Hopkins, K. A., Lavers, B., and Lawford, H. G. (1983),Biotechnol Lett. 5, 1–6.

    CAS  Google Scholar 

  38. Nipkow, A., Beyeler, W., and Feichter, A. (1984),Appl. Microbiol. Biotechnol. 19, 237–240.

    Article  CAS  Google Scholar 

  39. Galani, I., Drainas, C., and Typas, M. A. (1985),Biotechnol. Lett. 7, 673–678.

    Article  CAS  Google Scholar 

  40. Baratti, J., Varma, R., and Bu'Lock, J. D. (1986),Biotechnol. Lett. 8, 175–180.

    Article  CAS  Google Scholar 

  41. Lawford, H. G., Holloway, P., and Ruggiero, A. (1988),Biotechnol. Lett. 10, 809–814.

    Article  CAS  Google Scholar 

  42. Lawford, H. G. and Rousseau, J. D. (1996),Appl. Biochem. Biotechnol. 57/58, 307–326.

    Google Scholar 

  43. Asghari, A., Bothast, R. J., Doran, J. B., and Ingram, L. O. (1996),J. Ind. Microbiol. 16, 42–47.

    Article  CAS  Google Scholar 

  44. Lawford, H. G. and Rousseau, J. D. (1997),Appl. Biochem. Biotechnol. (18th Symp.),63–65, 287.

    Google Scholar 

  45. Grohman, K., Himmel, M., Rivard, C., Tucker, M., Baker, T., Torget, R., and Graboski, M. (1984),Biotechnol. Bioeng. Symp. 14, 139–157.

    Google Scholar 

  46. Kong, F., Engler, C. R., and Soltes, E. (1992),Appl. Biochem. Biotechnol. 34/35, 23–35.

    Article  Google Scholar 

  47. Timell, T. E. (1964),Adv. Carbohydrate Chem. 19, 247–302.

    CAS  Google Scholar 

  48. Lawford, H. G. and Rousseau, J. D. (1993), inEnergy from Biomass and Wastes XVI (March 1992), Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.

    Google Scholar 

  49. McMillan, J. D. (1994), inEnzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC,ACS Symposium Series 566, pp. 411–437.

    Google Scholar 

  50. Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 301–322.

    Article  Google Scholar 

  51. Lawford, H. G. and Rousseau, J. D. (1994),Appl. Biochem. Biotechnol. 45/46, 437–448.

    Google Scholar 

  52. Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), in:Statistics for Experimenters Wiley, New York.

    Google Scholar 

  53. Davies, O. L. (1967), inDesign and Analysis of Industrial Experiments, Hafneri, New York.

    Google Scholar 

  54. Maddox, I. S. and Richert, S. H. (1977),J. Appl. Bacteriol. 43, 197–204.

    CAS  Google Scholar 

  55. Myers, R. H. (1971), inResponse Surface Methodology, Allyn and Bacon, Boston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. & McMillan, J.D. Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinantZymomonas . Appl Biochem Biotechnol 63, 269–286 (1997). https://doi.org/10.1007/BF02920430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920430

Index Entries

Navigation