Skip to main content
Log in

The thermal stability of Ni-11 wt% P metallic glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study of the crystallization of the metallic glass Ni81P19 was undertaken. A portion of the crystallization time-temperature-transformation curve was determined and compared with curves published by other authors. The composition and structure of the as-received metallic glass was determined. Crystallization kinetics of the glass and activation energy data were determined. Crystallization of the glass involved nucleation and growth of the crystalline phase from both the surface of quenched-in crystals and the bulk of the material. The activation energies obtained were similar for incubation, nucleation and growth. This along with supporting experimental evidence suggests that there is no activation barrier to nucleation and that all stages of crystallization are controlled by diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Muller andM. Von Heimendahl,J. Mater. Sci. 17 (1982) 2525.

    Google Scholar 

  2. U. Koster,Z. Metallkde 75 (1984) 691.

    Google Scholar 

  3. J. Wolny, J. Soltys andR. Kokoszka,J. Non. Cryst. Solids 91 (1987) 209.

    Google Scholar 

  4. A. Criado et al., Mater. Lett. 5 (1987) 182.

    Google Scholar 

  5. T. R. Anantharaman, in “Metallic Glasses Production, Properties and Applications”, edited by T. R. Anantharaman (Trans Tech, Switzerland, 1984) pp. 1–29.

    Google Scholar 

  6. H. S. Chen,Appl. Phys. Lett. 29 (1976) 12.

    Google Scholar 

  7. M. Takashi, M. Koshimura andT. Abazuka,Jpn J. Appl. Phys. 20 (1981) 1821.

    Google Scholar 

  8. N. Decristofaro, A. Freilich andG. Fish,J. Mater. Sci. 17 (1982) 2365.

    Google Scholar 

  9. H. S. Chen,Acta Metall. 24 (1976) 153.

    Google Scholar 

  10. M. Naka, A. Inoue andT. Masumoto,Sci. Rep. Res. Inst. Tohoku Univ. A Series 29 (1981) 184.

    Google Scholar 

  11. W. Ozgowicz et al., Scripta Metall. 17 (1983) 295.

    Google Scholar 

  12. R. L. Freed andJ. B. Vander-Sande,J. Non-Cryst Solids 27 (1978) 9.

    Google Scholar 

  13. H. S. Chen,Rep. Progr. Phys. 43 (1980) 353.

    Google Scholar 

  14. I. Bakonyi et al., Z. Metallkde 77 (1986) 425.

    Google Scholar 

  15. U. Pittermann andS. Ripper, in “Rapidly Quenched Metals”, edited by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985) p. 385.

    Google Scholar 

  16. W. Ding et al., Scripta Metall. 21 (1987) 1685.

    Google Scholar 

  17. H. W. Bergmann andH. U. Fritsch, in “Rapidly Solidified Metastable Materials”, edited by B. H. Kear and W. C. Giessen, Metals Research Society Symposia Proceedings Vol. 28 (North-Holland, New York, 1984) p. 3.

    Google Scholar 

  18. K. Masui, S. Maruno andT. Yamada,J. Jpn Inst. Met. 41 (1977) 1130.

    Google Scholar 

  19. Idem, ibid. 44 (1980) 124.

    Google Scholar 

  20. E. Vafaei-Makhsos,J. Appl. Phys. 51 (1980) 6366.

    Google Scholar 

  21. K. H. Kuo et al., Phil. Mag. 51 (1985) 205.

    Google Scholar 

  22. J. Hamlyn-Harris, Masters degree thesis, Royal Melbourne Institute of Technology (1986).

  23. J. Hamlyn-Harris, D. H. StJohn andD. K. Sood,MRS Proc. 51 (1985) 497.

    Google Scholar 

  24. C. M. Adam, Personal Communication.

  25. U. Koster,MRS Proc. 28 (1984) 175.

    Google Scholar 

  26. D. G. Morris,Met. Sci. 16 (1982) 457.

    Google Scholar 

  27. M. Von Heimendahl, in “Rapidly Quenched Metals”, edited by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985) p. 279.

    Google Scholar 

  28. G. K. Dey andS. Bannerjee,Meter. Sci. Engng 76 (1985) 127.

    Google Scholar 

  29. Idem, ibid. 73 (1985) 185.

    Google Scholar 

  30. M.-H. Zuercher andD. G. Morris,J. Mater. Sci. 23 (1988) 515.

    Google Scholar 

  31. M. A. Gibson andG. W. Delamore,ibid. 22 (1987) 4550.

    Google Scholar 

  32. M. Von Heimendahl,J. Mater. Sci. Lett. 2 (1983) 796.

    Google Scholar 

  33. W.-K. Wang, H. Iwasaki andK. Fukamichi,J. Mater. Sci. 15 (1980) 2701.

    Google Scholar 

  34. S. Budurov, T. Spassov and T. Markov,ibid. 21 (1986) 2553.

    Google Scholar 

  35. U. Herold andU. Koster, in “Rapidly Quenched Metals III”, Vol. 1, edited by B. Cantor (Metals Society, London, 1978) p. 281.

    Google Scholar 

  36. U. Koster andU. Herold, in “Glassy Metals I”, Topics in Applied Physics Vol. 46, edited by H.-J. Guntherodt and H. Beck (Springer, Berlin, 1981) p. 225.

    Google Scholar 

  37. R. Elliot, in “Eutectic Solidification Processing” (Butterworths, London, 1983) pp. 67–68.

    Google Scholar 

  38. P. Duwez,ASM Trans. 60 (1967) 607.

    Google Scholar 

  39. T. B. Massalski andC. G. Woychik,Acta Metall. 33 (1985) 1873.

    Google Scholar 

  40. D. H. StJohn,Metall. Trans. A. “Freezing Diagrams Pt III, Comparison with Experimental Observation and Relevance to Crystallization of Metallic Glass.” In press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamlyn-Harris, J.H., StJohn, D.H. & Sood, D.K. The thermal stability of Ni-11 wt% P metallic glass. J Mater Sci 25, 3008–3016 (1990). https://doi.org/10.1007/BF00584919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584919

Keywords

Navigation