Skip to main content
Log in

On numerical modelling of growth, differentiation and damage in structural living tissues

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The main purpose of this work is to present a continuum formulation to model growth, differentiation and damage, valid for both hard and soft tissues. The governing equations follow the classical theory of multiphasic continuous media, including the influence of extracellular matrix composition and cell populations. Finally, this general framework is simplified and particularized to numerically simulate two important biological processes, such as, bone remodelling and bone fracture healing. These two simplified formulations have been implemented into a finite element context that allowed us to predict the evolution of the main aspects involved in such biological processes as growth, cell proliferation, migration, differentiation or death, and tissue pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D'Arcy Wentworth Thompson (1997).On growth and form. Cambridge University Press, Cambridge.

    Google Scholar 

  2. S.C. Cowin (2004). Tissue growth and remodeling.Annu. Rev. Biomed. Eng.,6, 77–107.

    Article  Google Scholar 

  3. D.R. Carter and G.S. Beaupre (2001).Skeletal Function and Form. Cambridge University Press.

  4. Marjolein C.H. van der Meulen and Rik Huiskes (2002). Why mechanobiology? A survey article.J. of Biomechanics,35, 401–414.

    Article  Google Scholar 

  5. R.T. Hart (2001).Bone modeling and remodeling: theories and computation. Chapter 31, pp. 31.1–31.42. Bone Mechanics Handbook, 2nd Ed. CRC Press.

  6. H.E. Petermann, T.J. Reiter and F.G. Rammerstorfer (1997). Computational simulation of internal bone remodeling.Archives of Computational Methods in Engineering,4 (4), 295–323.

    Article  Google Scholar 

  7. J.M. García-Aznar, T. Rueberg and M. Doblaré. A bone remodelling model coupling microdamage growth and repairing by 3D BMU-activity.Biomech Model Mechanobiol, In press.

  8. R. Skalak, G. Dasgupta, M. Moss, E. Otten, P. Dullemeijer and H. Vilmann (1982). Analytical description of growth.J. Theor. Biol.,94, 555–577.

    Article  MathSciNet  Google Scholar 

  9. J.D. Humphrey (1995). Mechanics of the arterial wall: review and directions.Critic Rev Biomed Engng,23, 1–62.

    Google Scholar 

  10. L.A. Taber (1995). Biomechanics of growth, remodelling and morphogenesis.Appl. Mech. Rev.,48 (8), 487–545.

    Google Scholar 

  11. M. Doblaré, J.M. García and M.J. Gómez (2004). Modelling bone tissue fracture and healing: a review.Engineering Fracture Mechanics,71 (13–14), 1809–1840.

    Article  Google Scholar 

  12. H. Isaksson, W. Wilson, C.C. van Doukelaar, R. Huiskes and K. Ito. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing.J. Biomech, in press.

  13. V.A. Lubarda, A. Hoger (2002). On the mechanics of solids with a growing mass.Int. J. Solids Struct.,39, 4627–4664.

    Article  MATH  Google Scholar 

  14. E. Kuhl and P. Steinmann (2003). Theory and numerics of geometrically non-linear open system mechanics.Int. J. Numer. Metho. Engng.,58.

  15. E. Kuhl and P. Steinmann (2004). Computational modeling of healing: an application of the material force method.Biomech. Model. Mechanobiol.,2 (4).

    Google Scholar 

  16. K. Garikipati, E.M. Arruda, K. Grosh, H. Narayanan and S. Calve (2004). A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics.Journal of the Mechanics and Physics of Solids,52 (7), 1595–1625.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.F. Oster, J.D. Murray and A.K. Harris (1983). Mechanical aspects of mesenchymal morphogenesis.J Embryol. exp. Morph.,78, 83–125.

    Google Scholar 

  18. D. Manoussaki (2003). A mechanochemical model of angiogenesis and vasculogenesis.Mathematical Modelling and Numerical Analysis,37 (4), 581–599.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Namy, J. Ohayon and P. Tracqui (2004). Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields.Journal of Theoretical Biology,227, 103–120.

    Article  MathSciNet  Google Scholar 

  20. S. Ramtani (2004). Mechanical modelling of cell/ecm and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation.J. Biomech.,37 (11), 1709–18.

    Article  Google Scholar 

  21. C.J. Hernandez (2001).Simulation of bone remodeling during the development and treatment of osteoporosis. PhD thesis, Stanford University, Stanford, California.

    Google Scholar 

  22. R.B. Martin (2003). Fatigue microdamage as an essential element of bone mechanics and biology.Calcified Tissue International,73 (2), 101–107.

    Article  Google Scholar 

  23. C.H. Turner (2002). Biomechanics of bone: determinants of skeletal fragility and bone quality.Osteoporos Int.,13 (2), 97–104.

    Article  Google Scholar 

  24. J.A. Buckwalter (2002). Articular cartilage injuries.Clin. Orthop.,402, 21–37.

    Article  Google Scholar 

  25. R.G. Breuls, C.V. Bouten, C.W. Oomens, D.L. Bader and F.P. Baaijeus (2003). A theoretical analysis of damage evolution in skeletal muscle tissue with reference to pressure ulcer development.J. Biomech. Eng.,125 (6), 902–909.

    Article  Google Scholar 

  26. R.G. Breuls, C.V. Bouten, C.W. Oomens, D.L. Bader and F.P. Baaijens (2003). Compression induced cell damage in engineered muscle tissue: an in vitro model to study pressure ulcer aetiology.Ann Biomed. Eng.,31 (11), 1357–1364.

    Article  Google Scholar 

  27. J. Lemaitre and J.L. Chaboche (1990).Mechanics of solid materials. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  28. J.C. Simo and J.W. Ju (1987). Strain- and stress-based continuum damage models: I. formulation.International Journal of Solids and Structures,23, 821–840.

    Article  MATH  Google Scholar 

  29. J.P. Cordebois and F. Sideroff (1982). Damage induced elastic anisotropy.Mechanical Behavior of Anisotropic Solids. Proc. EUROMECH colloque,115, 761–774.

    Google Scholar 

  30. D.B. Burr, C.H. Turner, P. Naick, M.R. Forwood, W. Ambrosius, M.S. Hasan and R. Pidaparti (1998). Does microdamage accumulation affect the mechanical properties of bone?J. Biomech.,31 (4), 337–345.

    Article  Google Scholar 

  31. J.E. Marsden and T.J.R. Hughes (1983).Mathematical foundations of elasticity. Dover Publications, INC., New York.

    MATH  Google Scholar 

  32. E.K. Rodriguez, A. Hoger and A.D. McCulloch (1994). Stress-dependent finite growth in soft elastic tissues.J. Biomech.,27 (4), 455–467.

    Article  Google Scholar 

  33. C. Truesdell and W. Noll (1965).The Non-linear Field Theories, (Handbuch der Physik, Band III). Springer, Berlin.

    Google Scholar 

  34. J.D. Murray and G.F. Oster (1984). Cell traction models for generating pattern and form in morphogenesis.J. Math. Biol.,19 (3), 265–279.

    MathSciNet  MATH  Google Scholar 

  35. S. Harada and G.A. Rodan (2003). Control of osteoblast function and regulation of bone mass.Nature,423, 349–356.

    Article  Google Scholar 

  36. H.M. Frost (1964).Dynamics of bone remodelling, pages 315–333. Bone biodynamics. Boston, Little, Brown Co..

    Google Scholar 

  37. S.J. Hazelwood, R.B. Martin, M.M. Rashid and J.J. Rodrigo (2001). A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload?J. Biomech.,34 (3), 299–308.

    Article  Google Scholar 

  38. J. Wolff (1892).The Law of Bone Remodelling. Das Gesetz derTransformation der Kuochen, Kirschwald. Translated by Maquet, P., Furlong, R.

  39. R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dalstra, B. Fudala and T.J. Sloof (1987). Adaptive bone-remodelling theory applied to prosthetic-design analysis.J. Biomech.,20 (11/12), 1135–1150.

    Article  Google Scholar 

  40. D.R. Carter, D.P. Fyhrie and R.T. Whalen (1987). Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy.J. Biomech.,20 (8), 1095–1109.

    Article  Google Scholar 

  41. P.J. Prendergast and D. Taylor (1994). Prediction of bone adaptation using damage accumulation.J. Biomech.,27, 1067–1076.

    Article  Google Scholar 

  42. R.B. Martin (1995). A mathematical model for fatigue damage repair and stress fracture osteonal bone.J. Orhop. Res.,13, 309–316.

    Article  Google Scholar 

  43. C.R. Jacobs, J.C. Simo, G.S. Beaupré and D.R. Carter (1997). Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations.J. Biomech.,30 (6), 603–13.

    Article  Google Scholar 

  44. R.T. Hart and S.P. Fritton (1997). Introduction to finite-element based simulation of the functional adaptation of cancellous bone.Forma,12, 277–299.

    Google Scholar 

  45. P. Fernandes, H. Rodrigues and C.R. Jacobs (1999). A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of wolff.Comput. Methods Biomech. Biomed. Eng.,2 (2), 125–138.

    Article  Google Scholar 

  46. M. Doblaré and J.M. García (2001). Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement.J. Biomech.,34 (9), 1157–70.

    Article  Google Scholar 

  47. M. Doblaré and J.M. García (2002). Anisotropic bone remodelling model based on a continuum damage-repair theory.J. Biomech.,35 (1), 1–17.

    Article  Google Scholar 

  48. S.C. Cowin and D.H. Hegedus (1976). Bone remodeling i: A theory of adaptive elasticity.J. Elasticity,6, 313–326.

    Article  MathSciNet  MATH  Google Scholar 

  49. R.T. Hart, D.T. Davy and K.G. Heiple (1984). A computational model for stress analysis of adaptive elastic materials with a view toward applications in strain-induced bone remodelling.J. Biomech. Eng.,106, 342–350.

    Google Scholar 

  50. G.S. Beaupré, T.E. Orr and D.R. Carter (1990). An approach for time-dependent bone modeling and remodeling-theoretical development.Journal of Orthopoedic Research,8, 551–651.

    Google Scholar 

  51. H. Weinans, R. Huiskes and H.J. Grootenboer (1992). The behavior of adaptive bone-remodeling simulation models.J. Biomech.,25, 1425–1441.

    Article  Google Scholar 

  52. S. Ramtani and M. Zidi (2001). A theoretical model of the effect of continuum damage on a bone adaptation model.J. Biomech.,34 (4), 471–9.

    Article  Google Scholar 

  53. R. Huiskes, R. Ruimerman, G.H. van Lenthe and J.D. Janssen (2000). Effects of mechanical forces on maintenance and adaptation of form in trabecular bone.Nature,405, 704–706.

    Article  Google Scholar 

  54. C.J. Hernandez, G.S. Beaupré and D.R. Carter (2000). A model of mechanobiologic and metabolic influences on bone adaptation.J. Rehabil. Res. Dev.,37 (2), 235–244.

    Google Scholar 

  55. C.J. Hernandez, G.S. Beaupré, R. Marcus and D.R. Carter (2001). A theoretical analysis of the contributions of remodeling space, mineralization, and bone balance to changes in bone mineral density during alendronate treatment.Bone,29, (6), 511–516.

    Article  Google Scholar 

  56. C.J. Hernandez, G.S. Beaupré and D.R. Carter (2003). A theoretical analysis of the changes in basic multicellular unit activity at menopause.Bone,32, 357–63.

    Article  Google Scholar 

  57. R.B. Martin, D.B. Burr and N.A. Sharkey (1998).Skeletal Tissue Mechanics. New York: Springer-Verlarg.

    Google Scholar 

  58. R.B. Martin (1984).Porosity and specific surface of bone, volume 10 ofCritical Reviews in Biomedical Engineering, Chapter 3, pp. 179–222. CRC Press.

  59. C.J. Hernández, G.S. Beaupré, T.S. Keller and D.R. Carter (2001). The influence of bone volume fraction and ash fraction on bone strength and modulus.Bone,29 (1), 74–78.

    Article  Google Scholar 

  60. C.A. Pattin, W.E. Caler and D.R. Carter (1996). Cyclic mechanical property degradation during fatigue loading of cortical bone.J Biomech,29 (1), 69–79.

    Article  Google Scholar 

  61. P.K. Venesmanaa, H.P. Kroger, J.S. Jurvelin, H.J. Miertinen, O.T. Suomalainen and E.M. Alhava (2003). Periprosthetic bone loss after cemented total hip arthroplasty: a prospective 5-year dual energy radiographic absorptiometry study of 15 patients.Acta Orthop. Scand.,74 (1), 31–36.

    Article  Google Scholar 

  62. D.E. Ashhurst (1986). The influence of mechanical stability on the healing of experimental fractures in the rabbit: a microscopical study. Series B313, 271–302.

    Google Scholar 

  63. M.M. Sandberg, H.T. Aro and E.I. Vuorio (1993). Gene expression during bone repair.Clin. Orthop. Rel. Res.

  64. F. Pauwels (1960). Eine neue theorie über den ernflub mechanischer reize auf die differenzierung der stützgewebe.Z. Anat. Entwicklungsgeschichte,121, 478–515.

    Article  Google Scholar 

  65. S.M. Perren (1979). Physical and biological aspects of fracture healing with special reference to internal fixation.Clin. Orthop. Rel. Res.,138, 175–196.

    Google Scholar 

  66. S.M. Perren and J. Cordey (1980).The concept of interfragmentary strain, pp. 63–77. Currect concepts of internal fixation of fractures. Springer-Verlarg, Berlin.

    Google Scholar 

  67. D.R. Carter, P.R. Bleuman and G.S. Beaupré (1998). Correlations between mechanical stress history and tissue differentiation in initial fracture healing.J. Orthop. Res.,6, 736–748.

    Article  Google Scholar 

  68. D.R. Carter, G.S. Beaupré, N.J. Giori and J.A. Helms (1998). Mechanobiology of skeletal regeneration.Clin. Orthop. Rel. Res.,S355, S41-S55.

    Google Scholar 

  69. L.E. Claes and C.A. Heigele (1999). Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing.J. Biomech., 32:255–266, 1999.

    Article  Google Scholar 

  70. P.J. Prendergast, R. Huiskes and K. Soballe (1997). Biophysical stimuli on cells during tissue differentiation at implant interfaces.J. Biomech.,6, 539–548.

    Article  Google Scholar 

  71. A. Bailón-Plaza and M.C.H. Van Der Meulen (2001). A mathematical framework to study the effects of growth factor influences on fracture healing.J. Theor. Biol.,212, 191–209.

    Article  Google Scholar 

  72. D. Lacroix and P.J. Prendergast (2002). A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading.J. Biomech.,35, 1163–1171.

    Article  Google Scholar 

  73. U. Simon, P. Augat, M. Utz and L. Claes (2002). Dynamical simulation of the fracture healing process including vascularity.Acta of Bioengineering and Biomechanics,4 S1, 772–773.

    Google Scholar 

  74. A. Bailón-Plaza and M.C.H. van der Meulen (2003). A Mathematical Framework to Study the Effects of Growth Factor Influences on Fracture Healing.Journal of Biomechanics,36, 1069–1077.

    Article  Google Scholar 

  75. J.H. Kuiper, J.B. Richardson and B.A. Ashton (2000). Computer simulation to study the effect of fracture site movement on tissue formation and fracture stiffness restoration. InEuropean Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS.

  76. Ch. Ament and E.P. Hofer (2000). A fuzzy logic model of fracture healing.J. Biomech.,33, 961–968.

    Article  Google Scholar 

  77. M.J. Gómez-Benito, J.M. García-Aznar, J.H. Kuiper, M. Doblaré and J.B. Richardson (2005). Influence of fracture gap size on the pattern of long bone healing: A computational study.J. Theor Biol,235 (1), 105–119.

    Article  Google Scholar 

  78. J.H. Kuiper, J.B. Richardson and B.A. Ashton (1996). Mechanical signals in early fracture callus. In J. Vander Sloten, G. Lowet, R. Van Audekercke, and G. Van der Perre, editors,Proc 10th Europ Soc Biomech, page 154.

  79. J.H. Kuiper, B.A. Ashton and J.B. Richardson (2000). Computer simulation of fracture callus formation and stiffness restoration. In P.J. Prendergast, T.C. Lee, and A.J. Carr (Eds.),Proc 12th Europ Soc Biomech, page 61.

  80. D. Lacroix (2000).Simulation of tissue differentiation during fracture healing. PhD thesis, University of Dublin.

  81. D.M. Cullinane, K.T. Salisbury, Y. Alkhiary and S. Eisenberg (2003). Effects of the local mechanical environtment on vertebrate tissue differentiation during repair: does repair recapitulate development.The Journal of Experimental Biology,206, 2459–2471.

    Article  Google Scholar 

  82. G.S. Beaupré, T.E. Orr and D.R. Carter (1990). An approach for time-dependent bone modeling and remodeling-application: A preliminary remodeling simulation.Journal of Orthopaedic Research,8, 662–670.

    Article  Google Scholar 

  83. G.J. Breur, VanEnkevort, C.E. Farnum and N.J. Wilsman (1991). Linear Relationship between the Volume of Hypertrophic Chondrocytes and the Rate of Longitudinal Bone Growth in Growth Plates.Journal of Orthopeadic Research,9, 348–359.

    Article  Google Scholar 

  84. N.J. Wilsman, C.E. Farnum, E.M. Leiferman, M. Fry and C. Barreto (1996). Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics.Journal of Orthopaedic Research,14, 927–936.

    Article  Google Scholar 

  85. Ch. Ament and E.P. Hofer (1996). On the importance of the osteogenic and vasculative factors in callus healing. InProc. of the 5th Meeting of the International Society for Fracture Repair.

  86. C.R. Jacobs (1994).Numerical simulation of Bone Adaptation to Mechanical Loading. PhD thesis, Stanford University.

  87. J.R. Levick (1987). Flow through interstitium and other fibrous matrices.Quaterly Journal of Experimental Physiology,72, 409–438.

    Google Scholar 

  88. E. Mücke (1993).Shapes and Implementations in Three-Dimensional Geometry. PhD thesis, University of Illinois at Urbana-Champaign.

  89. L. Claes, P. Augat, G. Suger and H.J. Wilke (1997). Influence of size and stability of the osteotomy gap on the success of fracture healing.J. Orthop. Res.,15 (4), 577–584.

    Article  Google Scholar 

  90. H.M. Frost (1988). The biology of fracture healing.Clinical Orhopaedics and Related Research,248, 283–293.

    Google Scholar 

  91. R. Dillon and H.G. Othmer (1999). A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud.Journal of Theoretical Biology,197 (3), 295–330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Doblaré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doblaré, M., García-Aznar, J.M. On numerical modelling of growth, differentiation and damage in structural living tissues. Arch Computat Methods Eng 13, 471 (2006). https://doi.org/10.1007/BF02905856

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02905856

Keywords

Navigation