Skip to main content
Log in

Serum boron concentration from inhabitants of an urban area in Japan

Reference value and interval for the health screening of boron exposure

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Boron (B) levels were determined in the serum of 980 healthy inhabitants living in an urban area of Japan by means of inductively coupled plasma emission spectrometry (ICPES).

The results showed a log-normal distribution of serum B for both sexes, although there are age-related differences. In male subjects, serum B increases rapidly up to 49 yr of age, reaching a plateau between ages 50 and 69 yr old, followed by a gradual increase up to 70 yr or older. Female subjects exhibit a gradual increase up to the age of 70 yr old. The reference value for male and female subjects was 79.8 μg/L and 67.9 μg/L, and the reference interval was 33.3–191.2 μg/L and 29.5–154.9 μg/L, respectively.

The obtained reference value and interval of the nonexposed group may be useful for health screening for B exposure, either for people living in regions with high levels of B in the environment, or for workers who are exposed to this element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Weir and R. S. Fisher, Toxicologic studies on borax and boric acid,Toxicol. Appl. Pharmacol. 23, 351–364 (1972).

    Article  PubMed  CAS  Google Scholar 

  2. A. Miyazaki and K. Bansho, Determination of trace boron in natural waters by inductively coupled plasma emission spectrometry combined with solvent extraction,Anal. Sci. 2, 451–455 (1986).

    Article  CAS  Google Scholar 

  3. D. H. Wegman, E. A. Eisen, X. Hu, S. R. Woskie, R. G. Smith, and D. H. Garabrant, Acute and chronic respiratory effects of sodium borate particulate exposures,Environ. Health Perspect. 102 (Suppl. 7), 119–128 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. A. A. Ferrando, N. R. Green, K. W. Barnes, and B. Woodward, Microwave digestion preparation and ICP determination of boron in human plasma,Biol. Trace Element Res. 37, 17–25 (1993).

    Article  CAS  Google Scholar 

  5. W. B. Clarke, M. Koekebakker, R. D. Barr, R. G. Downing, and R. F. Fleming, Analysis of ultra trace lithium and boron by neutron activation analysis and mass spectrometric measurement of helium-3 and helium-4,Appl. Radiat. Isot. 38, 735–743 (1987).

    Article  CAS  Google Scholar 

  6. W. B. Clarke, C. E. Webber, M. Koekebakker, and R. D. Barr, Lithium and boron in human blood,J. Lab. Clin. Med. 109, 155–158 (1987).

    PubMed  CAS  Google Scholar 

  7. F. R. Abou-Shakara, J. M. Havercroft, and N. I. Ward, Lithium and boron in biological tissues and fluids,Trace Element Med. 6, 142–146 (1989).

    Google Scholar 

  8. K. Kobori, Y. Mise, N. Takata, H. Sakakibara, K. Maruyama, and T. Kobayashi, Simultaneous multielement determination of metals in biomaterials by quick digester-inductively coupled plasma emission spectroscopy system,Eiseikensa 33, 119–126 (1983).

    Google Scholar 

  9. B. D. Culver, P. T. Shen, T. H. Taylor, A. Lee-Feldstein, H. Anton-Culver, and P. L. Strong, The relationship of blood- and urine-boron to boron exposure in boraxworkers and usefulness of urine-boron as an exposure maker,Environ. Health Perspect 102 (Suppl. 7), 133–137 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. H. R. Imbus, J. Cholak, L. H. Miller, and T. Sterling, Boron, cadmium, chromium, and nickel in blood and urine,Arch. Environ. Health 6, 112–121 (1963).

    Google Scholar 

  11. R. D. Barr, W. B. Clarke, R. M. Clarke, J. Venturelli, G. R. Norman, and R. G. Downing, Regulation of lithium and boron levels in normal human blood: Environmental and genetic considerations,J. Lab. Clin. Med. 121, 614–619 (1993).

    PubMed  CAS  Google Scholar 

  12. W. Slavin, Flames, furnaces, plasmas. How do we choose?Anal. Chem. 58, 589A-597A (1986).

    Article  CAS  Google Scholar 

  13. P. Chappuis, J. Poupon, and F. Rousselet, A sequential and simple determination of zinc, copper and aluminum in blood samples by inductively coupled plasma atomic emission spectrometry,Clin. Chem. Acta 206, 155–165 (1992).

    Article  CAS  Google Scholar 

  14. D. E. Nixon, T. P. Moyer, P. Johnson, J. T. McCall, A. B. Ness, W. H. Fjerstad, and M. B. Wehde, Routine measurement of calcium, magnesium copper, zinc, and iron in urine and serum by inductively coupled plasma emission spectroscopy,Clin. Chem. 32, 1660–1665 (1986).

    PubMed  CAS  Google Scholar 

  15. Y. Mauras, K. S. Ang, P. Simon, B. Tessier, F. Cartier, and P. Allain, Increase in blood plasma levels of boron and strontium in hemodialyzed patients,Clin. Chem. Acta 156, 315–320 (1986).

    Article  CAS  Google Scholar 

  16. C. D. Hunt and T. R. Shuler, Open-vessel, wet-ash, low-temperature digestion of biological materials for inductively coupled argon plasma spectroscopy (ICAP) analysis of boron and other elements,J. Micronutrient Anal. 6, 161–174 (1989).

    CAS  Google Scholar 

  17. J. Schubert, A. Brodsky, and S. Tyler, The log-normal function as a stochastic model of the distribution of strontium-90 and other fission products in humans,Health Phys. 13, 1187–1204 (1967).

    Article  PubMed  CAS  Google Scholar 

  18. J. A. Jansen, J. S. Schou, and B. Aggerbeck, Gastro-intestinal absorption and in vitro release of boric acid from water emulsifying ointments,Food Chem. Toxicol. 22, 49–53 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. C. Roggi, E. Sabbioni, C. Minoia, A. Ronchi, A. Gatti, B. Hansen, S. Silva, and L. Maccarini, Trace element reference values in tissues from inhabitants of the European Union. IX. Harmonization of statistical treatment: blood cadmium in Italian subjects,Sci. Total Environ. 166, 235–243 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. E. K. Silbergeld, J. Schwartz, and K. Mahaffey, Lead and osteoporosis: Mobilization of lead from bone in postmenopausal women,Environ. Res. 47, 79–94 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. V. Iyengar and J. Woittiez, Trace elements in human clinical specimens: Evaluation of literature data to identify reference values,Clin. Chem. 34, 474–481 (1988).

    PubMed  CAS  Google Scholar 

  22. N. R. Green and A. A. Ferrando, Plasma boron and the effects of boron supplementation in males,Environ. Health Perspect. 102, (Suppl. 7), 73–77 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. R. Von Burg, Boron, boric acid, borates and boron oxide,J. Appl. Toxicol.,12, 149–152 (1992).

    Article  Google Scholar 

  24. L. Parmeggiani,Encyclopedia of Occupational Health and Safety, 3rd ed., International Labour Office, Geneva, (1983).

    Google Scholar 

  25. M. L. Brown,Present Knowledge in Nutrition, 6th ed., International Life Science Institute Nutrition Foundation, Washington, DC (1990).

    Google Scholar 

  26. T. Takeo, Analysis of major elements in tea by inductively coupled plasma-atomic emission spectrometry,Nippon Shokuhin Kogyo Gakhaishi 27, 439–444 (1980).

    CAS  Google Scholar 

  27. T. Takeo, Analysis of minerals in tea by an inductively coupled plasma-atomic emission spectrometry,JARQ 19, 32–39 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usuda, K., Kono, K. & Yoshida, Y. Serum boron concentration from inhabitants of an urban area in Japan. Biol Trace Elem Res 56, 167–178 (1997). https://doi.org/10.1007/BF02785390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785390

Index Entries

Navigation