Skip to main content
Log in

Statistical and biological consequences of preferential sampling in phytosociology: Theoretical considerations and a case study

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Due to the long tradition of the Braun-Blanquet approach, many relevés using this approach have been made. Recent developments in vegetation-plot databases provide an opportunity to effectively use these relevés to study ecological problems as well. Opinions differ, however, concerning the applicability of these datasets, often with their use being restricted to exploration and hypothesis generation only.

We assert that preferential sampling, which is characteristic of the Braun-Blanquet approach, means using a special definition of statistical population rather than non-random sampling. We present a case study, where consequences of using a preferential and non-preferential definition of statistical population are studied. Although the traits of stands that are preferred or avoided by the phytosociologist during preferential sampling can be identified, there are no general rules that could predict the difference between the preferential and non-preferential datasets obtained for the same object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borhidi A. (1995): Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora.Acta Bot. Hung. 39: 97–181.

    Google Scholar 

  • Borhidi A. (2003):Plant communities of Hungary. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Braun-Blanquet J. (1928):Pflanzensoziologie. Springer Verlag, Wien.

    Google Scholar 

  • Brisse H., de Ruffray P., Grandjouan G. &Hoff M. (1995): The Phytosociological Database “SOPHY” Part 1: Calibration of indicator plants, Part II: Socio-ecological classification of the relevés.Ann. Bot. (Rome) 53: 177–223.

    Google Scholar 

  • Chytrý M. (2001): Phytosociological data give biased estimates of species richness.J. Veg. Sci. 12: 439–444.

    Article  Google Scholar 

  • Chytrý M., Tichý L. &Roleček J. (2003): Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient.Folia Geobot. 38: 429–442.

    Article  Google Scholar 

  • Chytrý M. &Rafajová M. (2003): Czech National Phytosociological Database: basic statistics of the available vegetation-plot data.Preslia 75: 1–15.

    Google Scholar 

  • Csontos P. (1996):Az aljnövényzet változásai cseres-tölgyes erdők regenerációs szukcessziójában (Regeneration succession of sessile oak — turkey oak forests: Processes in the herb layer). Scientia Publishing, Budapest.

    Google Scholar 

  • Dierschke H. (1994):Pflanzensoziologie. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  • Duckworth J.C., Bunce R.G.H. &Malloch A.J.C. (2000): Vegetation gradients in Atlantic Europe: the use of existing phytosociological data in preliminary investigations on the potential effects of climate change on British vegetation.Global Ecol. Biogeogr. 9: 187–199.

    Article  Google Scholar 

  • Ewald J. (2001): Der Beitrag pflanzensoziologischer Datenbanken zur vegetationsökologischen Forschung.Ber. Reinhold Tüxen Ges. 13: 53–69.

    Google Scholar 

  • Font X. &Ninot J.-M. (1995): A regional project for drawing up inventories of flora and vegetation in Catalonia (Spain).Ann. Bot. (Rome) 53: 99–105.

    Google Scholar 

  • Hallgren E., Palmer M.W. &Milberg P. (1999): Data diving with cross-validation: an investigation of broad-scale gradients in Swedish weed communities.J. Ecol. 87: 1037–1051.

    Article  Google Scholar 

  • Hahn I. &Scheuring I. (2003): The effect of measurement scales on estimating vegetation cover: a computer experiment.Community Ecol. 4: 29–33.

    Article  Google Scholar 

  • Hennekens S.M. &Schaminée J.H.J. (2001): TURBOVEG, a comprehensive database management system for vegetation data.J. Veg. Sci. 12: 589–591.

    Article  Google Scholar 

  • Holeksa J. &Wozniak G. (2005): Biased vegetation patterns and detection of vegetation changes using phytosociological databeses. A case study in the forest of the Babia Góra National Park (the West Carpathians, Poland).Phytocoenologia 35: 1–18.

    Article  Google Scholar 

  • Horváth F., Dobolyi Z.K., Morschhauser T., Lőkös L., Karas L. &Szerdahelyi T. (1995):FLÓRA database 1.2. MTA-ÖBKI & MTM Növénytára, Vácrátót.

    Google Scholar 

  • Kennedy K.A. &Addison P.A. (1987): Some consideration for the use of visual estimates of plant cover in biomonitoring.J. Ecol. 75: 151–157.

    Article  Google Scholar 

  • Kent M. &Coker P. (1992):Vegetation description and analysis. A practical approach. John Wiley & Sons, Chichester.

    Google Scholar 

  • Kienast F., Wildi O. &Brzeziecki B. (1998): Potential impacts of climate change on species richness in mountainforests — An ecological risk assessment.Biol. Conservation 83: 291–305.

    Article  Google Scholar 

  • Kovács-Láng E., Kröel-Dulay Gy., Kertész M., Fekete G., Bartha S., Mika J., Dobi-Wantuch I., Rédei T., Rajkai K. &Hahn I. (2000): Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change.Phytocoenologia 30: 385–407.

    Google Scholar 

  • Kröel-Dulay Gy., Ódor P., Peters D.P.C. &Hochstrasser T. (2004): Distribution of plant species at a biome transition zone in New Mexico.J. Veg. Sci. 15: 531–538.

    Article  Google Scholar 

  • Kun A. &Ittzés P. (1995): ASeseli leucospermum W. et K. és a nyílt dolomitsziklagyep (Seseli leucospermo-Festucetum pallentis) előfordulása szarmata mészkövön (Occurence ofSeseli leucospermum W. et K. andSeseli leucospermo-Festucetum pallentis community on sarmatian limestone).Bot. Közlem. 82: 27–34.

    Google Scholar 

  • Legendre P. &Legendre L. (1998):Numerical ecology. Ed. 2. Elsevier, Amsterdam.

    Google Scholar 

  • Legendre P. &Anderson M.J. (1999): Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments.Ecol. Monogr. 69: 1–24.

    Article  Google Scholar 

  • Mirkin B.M. (1989): Plant taxonomy and syntaxonomy: a comparative analysis.Vegetatio 82: 35–40.

    Article  Google Scholar 

  • Mucina L. (1997): Classification of vegetation: Past, present and future.J. Veg. Sci. 8: 751–760.

    Article  Google Scholar 

  • Mucina L., Bredenkamp G.J., Hoare D.B. &McDonald D.J. (2000): A national vegetation database for South Africa.S. African J. Sci. 96: 497–498.

    Google Scholar 

  • Mucina L., Rodwell J. S., Schaminée J.H.J. &Dierschke H. (1993): European vegetation survey: current state of some national programmes.J. Veg. Sci. 4: 429–439.

    Article  Google Scholar 

  • Pignatti S., Dominici E. &Pietrosanti S. (1997): European vegetation survey — from the methodological discussion to the first approximation.Ann. Bot. (Rome) 45: 5–16.

    Google Scholar 

  • Podani J. (2000):Introduction to the exploration of multivariate biological data. Backhuys Publishers, Leiden.

    Google Scholar 

  • Rédei T. (2005):A növényi fajkészlet eloszlása nyílt szárazgyepekben (The distribution of plant species pool in open dry grasslands). PhD. Thesis, Budapest.

  • Rédei T., Botta-Dukát Z., Csiky J., Kun A. &Tóth T. (2003): On the possible role of local effects on species richness of acidic and calcareous rock grasslands in northern Hungary.Folia Geobot. 38: 453–467.

    Article  Google Scholar 

  • Rodwell J.S. (1995): The European Vegetation Survey questionnaire: an overview of phytosociological data, vegetation survey programmes and databases in Europe.Ann. Bot. (Rome) 53: 87–98.

    Google Scholar 

  • Rodwell J.S., Schaminée J.H.J., Mucina L., Pignatti S., Dring J. & Moss D. (2002):The diversity of European vegetation. An overview of phytosociological alliances and their relationships to EUNIS habitats. EC-LNV. Report EC-LNV. nr. 2002/054, Wageningen.

  • Ruprecht E. &Botta-Dukát Z. (1999): Long-term vegetation textural changes of three fen communities near Cluj-Napoca (Romania).Acta Bot. Hung. 42: 263–281.

    Google Scholar 

  • Sokal R.R. &Rohlf F.J. (1981):Biometry. The principles and practice of statistics in biological research. Ed. 2. Freeman, New York.

    Google Scholar 

  • Sprent P. &Smeeton N.C. (2001):Applied nonparametric statistical methods. Chapman & Hall/CRC, Boca Raton.

    Google Scholar 

  • SPSS Inc. (1999):SPSS base 10.0 user’s guide. SPSS Inc., Chicago.

    Google Scholar 

  • Sykes J.M., Horrill A.D. &Mountford M.D. (1983): Use of visual cover assessments as quantitative estimators of some British woodland taxa.J. Ecol. 71: 437–450.

    Article  Google Scholar 

  • ter Braak C.J.F. &Šmilauer P. (1998):CANOCO reference manual and user’s guide to Canoco for Windows. Centre for Biometry, Wageningen.

    Google Scholar 

  • Westhoff V. &van der Maarel E. (1980): The Braun-Blanquet approach. In:Whittaker R.H. (ed.),Classification of plant communities, Junk, The Hague.

    Google Scholar 

  • Zar J.H. (1999):Biostatistical analysis. Ed. 4. Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Botta-Dukát.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botta-Dukát, Z., Kovács-Láng, E., Rédei, T. et al. Statistical and biological consequences of preferential sampling in phytosociology: Theoretical considerations and a case study. Folia Geobot 42, 141–152 (2007). https://doi.org/10.1007/BF02893880

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02893880

Keywords

Navigation