Skip to main content
Log in

Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

We investigated the relationship between soil pH/calcium content and species richness of vascular plants in seven broadly defined Central European vegetation types, using Ellenberg indicator values for soil reaction and a phytosociological data set of 11,041 vegetation sample plots from the Czech Republic. The vegetation types included (A) broad-leaved deciduous forests, (B) meadows, (C) dry grasslands, (D) reed-bed and tall-sedge vegetation, (E) fens and transitional mires, (F) perennial synanthropic vegetation and (G) annual synanthropic vegetation. Relationships between local species richness (alpha diversity) and pH/calcium were positive for vegetation types A and C, negative for D and G, unimodal for E, and insignificant for B and F. Ellenberg soil reaction values explained 37% of variation in local species richness for vegetation type E, 24% for A, 13% for D, but only less than 4% for the others. Species pool size, i.e., the number of species that can potentially occur in a given habitat, was calculated for each plot using Beals index of sociological favourability applied to a large phytosociological database. For most vegetation types, the relationships between species pool size and pH/calcium were similar to the relationships between local species richness and pH/calcium, with the exception of meadows (weak unimodal) and perennial synanthropic vegetation (weak negative).

These patterns suggest that for those types of Central European vegetation that developed independently of human influence in the Pleistocene or early Holocene (dry grasslands, deciduous forests), there are larger pools of calcicole than calcifuge species. This pattern is also found at the level of local species richness, where it is, however, less clearly pronounced, possibly due to the predominance of a few widespread and generalist calcifuges in acidic habitats. The unimodal pattern found in mires may result from similar underlying mechanisms, but in high pH environments mineral-rich spring waters probably decrease species richness by having toxic effects on plant growth. By contrast, vegetation types developed under direct human influence (meadows, synathropic vegetation) show weak negative or no relationships of local species richness or species pool to pH/calcium gradient. These results support the hypothesis ofPärtel (Ecology 83: 2361–2366, 2002) andEwald (Folia Geobot. 38: 357–366, 2003), that the modern calcicole/calcifuge disparity in the species pool of Central European flora has resulted from historical and evolutionary processes that took place on high pH soils. In the Pleistocene, calcareous soils dominated both the dry continental landscapes of Central Europe and glacial refugia of temperate flora, which were mostly situated in southern European mountain ranges with abundant limestone and dolomite. The negative pattern of species richness along the pH/calcium gradient found in reed-bed and tall-sedge vegetation, however, is not consistent with this historical explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beals E.W. (1984): Bray-Curtis-ordination: an effective strategy for analysis of multivariate ecological data.Advances Ecol. Res. 14: 1–55.

    Article  Google Scholar 

  • Behrensmeyer A.K., Damuth J., DiMichele W., Potts R., Sues H.D. &Wing S. (1992):Terrestrial ecosystems through time. Chicago University Press, Chicago.

    Google Scholar 

  • Berglund B.E., Birks H.J.B., Ralska-Jasiewiczowa M. &Wright H.E. (1996):Palaeoecological events during the last 15 000 years. Wiley, Chichester.

    Google Scholar 

  • Brosofske K.D., Chen J. &Crow T.R. (2001): Understory vegetation and site factors: implications for a managed Wisconsin landscape.Forest Ecol. Managem. 146: 75–87.

    Article  Google Scholar 

  • Brunet J., Falkengren-Grerup U., Rühling A. &Tyler G. (1997): Regional differences in floristic change in South Swedish oak forests as related to soil chemistry and land use.J. Veg. Sci. 8: 329–336.

    Article  Google Scholar 

  • Caley M.J. &Schluter D. (1997): The relationship between local and regional diversity.Ecology 78: 70–80.

    Article  Google Scholar 

  • Chytrý M. (2001): Phytosociological data give biased estimates of species richness.J. Veg. Sci. 12: 439–444.

    Article  Google Scholar 

  • Chytrý M. &Rafajová M. (2003): Czech National Phytosociological Database: basic statistics of the available vegetation-plot data.Preslia 75: 1–15.

    Google Scholar 

  • Cornell H.V. &Lawton J.H. (1992): Species interactions, local and regional processes, and limits to the richness of ecological communities — a theoretical perspective.J. Anim. Ecol. 61: 1–12.

    Article  Google Scholar 

  • Diekmann M. &Lawesson J.E. (1999): Shifts in ecological behaviour of herbaceous forests species along a transect from northern Central to North Europe.Folia Geobot. 34: 127–141.

    Google Scholar 

  • Dumortier M., Butaye J., Jacquemyn H., Van Camp N., Lust N. &Hermy M. (2002): Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium.Forest Ecol. Managem. 158: 85–102.

    Article  Google Scholar 

  • Dupré C., Wessberg C. &Diekmann M. (2002): Species richness in deciduous forests: Effects of species pools and environmental variables.J. Veg. Sci. 13: 505–516.

    Article  Google Scholar 

  • Ellenberg H., Weber H.E., Düll R., Wirth W., Werner W. &Paulißen D. (1992): Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2.Scripta Geobot. 18: 1–258.

    Google Scholar 

  • Eriksson O. (1993): The species-pool hypothesis and plant community diversity.Oikos 68: 371–374.

    Article  Google Scholar 

  • Ewald J. (2001): Der Beitrag pflanzensoziologischer Datenbanken zur vegetationsökologischen Forschung.Ber. Reinhold-Tüxen-Ges. 13: 53–69.

    Google Scholar 

  • Ewald J. (2002): A probabilistic approach to estimating species pools from large compositional matrices.J. Veg. Sci. 13: 191–198.

    Article  Google Scholar 

  • Ewald J. (2003): The calcareous riddle: Why are there so many calciphilous species in the Central European flora?Folia Geobot. 38: 357–366 (this issue).

    Google Scholar 

  • Exner A., Willner W. &Grabherr G. (2002):Picea abies andAbies alba forests of the Austrian Alps: numerical classification and ordination.Folia Geobot. 37: 383–402.

    Google Scholar 

  • Glaser P.H., Janssens J.A. &Siegel D.I. (1990): The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota.J. Ecol. 78: 1021–1048.

    Article  Google Scholar 

  • Gough L., Grace J.B. &Taylor K.L. (1994): The relationship between species richness and community biomass: the importance of environmental variables.Oikos 70: 271–279.

    Article  Google Scholar 

  • Gough L, Shaver G.R., Carroll J., Royer D.L. &Laundre J.A. (2000): Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH.J. Ecol. 88: 54–66.

    Article  Google Scholar 

  • Gould W. &Walker M.D. (1999): Plant communities and landscape diversity along a Canadian Arctic river.J. Veg. Sci. 10: 537–548.

    Article  Google Scholar 

  • Grace J.B. (1999): The factors controlling species density in herbaceous plant communities.Perspect. Pl. Ecol. Evol. Syst. 3: 1–28.

    Article  Google Scholar 

  • Grace J.B. (2001): Difficulties with estimating and interpreting species pools and the implications for understanding patterns of diversity.Folia Geobot. 36: 71–83.

    Google Scholar 

  • Grime J.P. (1973): Control of species density in herbaceous vegetation.J. Environm. Managem. 1: 151–167.

    Google Scholar 

  • Grime J.P. (1979):Plant strategies and vegetation processes. Wiley, Chichester.

    Google Scholar 

  • Grubb P.J. (1987): Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In:Gee J.H.R. &Giller P.S. (eds.),Organization of communitiesd Past and present, Blackwell, Oxford, pp. 99–118.

    Google Scholar 

  • Gunnarsson U., Rydin H. &Sjörs H. (2000): Diversity and pH changes after 50 years on the boreal mire Skattlosbergs Stormosse, Central Sweden.J. Veg. Sci. 11: 277–286.

    Article  Google Scholar 

  • Hájková P. &Hájek M. (2003): Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationship to water and soil chemistry.Preslia 75: 271–287.

    Google Scholar 

  • Hennekens S.M. &Schaminée J.H.J. (2001): TURBOVEG, a comprehensive data base management system for vegetation data.J. Veg. Sci. 12: 589–591.

    Article  Google Scholar 

  • Herben T. (2000): Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect.J. Veg. Sci. 11: 123–126.

    Article  Google Scholar 

  • Hill M.O. &Carey P.D. (1997): Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values.J. Veg. Sci. 8: 579–586.

    Article  Google Scholar 

  • Huntley B. &Birks H.J.B. (1983):An atlas of past and present pollen maps for Europe: 0–13 000 years ago. Cambridge University Press, Cambridge.

    Google Scholar 

  • Huston M.A. (1994).Biological diversity. The coexistence of species on changing landscapes. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Lang G. (1994):Quartäre Vegetationsgeschichte Europas. G. Fischer, Jena, Stuttgart, New York.

    Google Scholar 

  • Lepš J. (2001): Species-pool hypothesis: limits to its testing.Folia Geobot. 36: 45–52.

    Google Scholar 

  • McCune B. (1994): Improving community analysis with the Beals smoothing function.Écoscience 1: 82–86.

    Google Scholar 

  • Moravec J., Balátová-Tuláčková E., Blažková D., Hadač E., Hejný S., Husák Š., Jeník J., Kolbek J., Krahulec F., Kropáč Z., Neuhäusl R., Rybníček K., Řehořek V. & Vicherek J. (1995): Rostlinná společenstva České republiky a jejich ohrožení (Red list of plant communities of the Czech Republic and their endangerment). Ed. 2.Severočeskou Přír., Suppl. 1995: 1–206.

  • Niklfeld H. (1972):Der niederösterreichische Alpenostrand — ein Glazialrefugium montaner Pflanzensippen. Verein zum Schutze der Alpenpflanzen und -Tiere, München.

    Google Scholar 

  • Olde Venterink H., Wassen M.J., Belgers J.D.M. &Verhoeven J.T.A. (2001): Control of environmental variables on species density in fens and meadows: importance of direct effects and effects through community biomass.J. Ecol. 89: 1033–1040.

    Article  CAS  Google Scholar 

  • Pärtel M. (2002): Local plant diversity patterns and evolutionary history at the regional scale.Ecology 83: 2361–2366.

    Google Scholar 

  • Pärtel M., Zobel M., Zobel K. &van der Maarel E. (1996): The species pool and its relation to species richness: evidence from Estonian plant communities.Oikos 75: 111–117.

    Article  Google Scholar 

  • Peet R.K. &Christensen N.L. (1980): Hardwood forest vegetation of the North Carolina piedmont.Veröff. Geobot. Inst. ETH Stiftung Rübel, Zürich 69: 14–39.

    Google Scholar 

  • Prinzing A., Durka W., Klotz S. &Brandl R. (2001): The niche of higher plants: evidence for phylogenetic conservatism.Proc. Roy. Soc. London, Ser. B, Biol. Sci. 268: 2383–2389.

    Article  CAS  Google Scholar 

  • Pyšek P., Sádlo J. &Mandák B. (2002): Catalogue of alien plants of the Czech Republic.Preslia 74: 97–186.

    Google Scholar 

  • Rey Benayas J.M. (1995): Patterns of diversity in the strata of boreal montane forest in British Columbia.J. Veg. Sci. 6: 95–98.

    Article  Google Scholar 

  • Rey Benayas J.M. &Scheiner S.M. (1993): Diversity patterns of wet meadows along geochemical gradients in central Spain.J. Veg. Sci. 4: 103–108.

    Article  Google Scholar 

  • Ricklefs R.E. &Schluter D. (1993):Species diversity in ecological communities. Historical and geographical perspectives. Univ. Chicago Press, Chicago, London.

    Google Scholar 

  • Roberts N. (1998):The Holocene. An environmental history. Ed. 2. Blackwell, Oxford.

    Google Scholar 

  • Rosenzweig M.L. (1995):Species diversity in space and time. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schaffers A.P. &Sýkora K.V. (2000): Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements.J. Veg. Sci. 11: 225–244.

    Article  Google Scholar 

  • Silvertown J.W. (1980): The dynamics of a grassland ecosystem: botanical equilibrium in the Park grass experiment.J. Appl. Ecol. 17: 491–504.

    Article  Google Scholar 

  • Sokal R.R. &Rohlf F.J. (1995):Biometry. Ed. 3. W.H. Freeman and Company, New York.

    Google Scholar 

  • StatSoft Inc. (2001):STATISTICA (data analysis software system), version 6. www.statsoft.com.

  • Taylor D.R., Aarsen L.W. &Loehle C. (1990): On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies.Oikos 58: 239–250.

    Article  Google Scholar 

  • Tichý L. (2002): JUICE, software for vegetation classification.J. Veg. Sci. 13: 451–453.

    Article  Google Scholar 

  • Tilman D. &Olff H. (1991): An experimental study of the effects of pH and nitrogen on grassland vegetation.Acta Oecol. 12: 427–441.

    Google Scholar 

  • Vitt D.H., Li Y. &Belland R.J. (1995): Patterns of bryophyte diversity in peatlands of continental western Canada.Bryologist 98: 218–227.

    Article  Google Scholar 

  • Walker D.A., Bockheim J.G., Chapin F.S., III,Eugster W., Nelson F.E. &Ping C.L. (2001): Calcium-rich tundra, wildlife, and the “Mammoth Steppe”.Quatern. Sci. Rev. 20: 149–163.

    Article  Google Scholar 

  • Wamelink G.W.W., Joosten V., van Dobben H.F. &Berendse F. (2002): Validity of Ellenberg indicator values judged from physico-chemical field measurements.J. Veg. Sci. 13: 269–278.

    Article  Google Scholar 

  • Wilson J.B. &Anderson B.J. (2001): Species-pool relations: like a wooden light bulb?Folia Geobot. 36: 35–44.

    Google Scholar 

  • Zobel M. (1992): Plant species coexistence: the role of historical, evolutionary and ecological factors.Oikos 65: 314–320.

    Article  Google Scholar 

  • Zobel M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?Trends Ecol. Evol. 12: 266–269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Chytrý.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chytrý, M., Tichý, L. & Roleček, J. Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot 38, 429–442 (2003). https://doi.org/10.1007/BF02803250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803250

Keywords

Navigation