Skip to main content
Log in

Study of microbial community structures in UASB sludge treating municipal wastewater by denaturing gradient gel electrophoresis of 16S rDNA

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of CODsoluble/ CODtotal were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated withMethanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together withM. concilii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hulshoff, P., Euler, H., Eitner, A. et al., GTZ sectoral project, promotion of anaerobic technology for the treatment of municipal and industrial sewagw and wastes, Proc. 8th Int. Conf. Anaerobic digestion, 1997, Japan, 285–292.

  2. Van Haandel, A. C., Lettinga, G., Anaerobic sewage treatment— A practical guide for regions with a hot climate, Chichester: John Wiley and Sons Ltd., 1994, 226.

    Google Scholar 

  3. Van Lier, J. B., Tilche, A., Ahring, B. K. et al., New perspectives in anaerobic digestion, Water Sci. Tech., 2001, 43: 1.

    Google Scholar 

  4. Mergaert, K., Vanderhaegen, B., Verstraete, W., Applicability and trends of anaerobic pre-treatment of municipal wastewater, Water Res., 1992, 26: 1025.

    Article  CAS  Google Scholar 

  5. Uemura, S., Harada, H., Treatment of sewage by a UASB reactor under moderate to low temperature conditions, Bioresource Technology, 2000, 73(3): 275.

    Article  Google Scholar 

  6. Van der Last, A. R. M., Lettinga, G., Anaerobic treatment of domastic sewage under moderate climate (Dutch) condition using upflow reactors at increased superficial velocities, Water Sci. Tech., 1992, 25 (7): 167.

    Google Scholar 

  7. Kalogo, Y., Verstraete, W., Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment: motives and perspectives, World J. Microbiol. Biotech., 1999, 15: 523.

    Article  CAS  Google Scholar 

  8. Kalogo, Y., Verstraete, W., Technical feasibility of the treatment of domestic wastewater by a CEPS-UASB system, Environ. Tech., 2000, 21: 55.

    Article  CAS  Google Scholar 

  9. Aiyuk, S., Verstraete, W., Sedimentological evolution in a UASB treating synthes, a new representative synthetic sewage, at low loding rates, Bioresource Tech., 2003, 93 (3): 269.

    Article  CAS  Google Scholar 

  10. Alphennaar, P. A., Groeneveld, N., Van Aelst, A. C., Scanning electron microscopical method for internal structure analysis of anaerobic granular sludge, Micron., 1994, 25: 129.

    Article  Google Scholar 

  11. Fang, H. H. P., Chui, H. K., Chen, T., Performance and granule characteristics of UASB process treating wastewater with hydrolyzed protins, Water Sci. Tech., 1994b, 30: 55.

    CAS  Google Scholar 

  12. Fang, H. H. P., Chui, H. K., Li, Y. Y., Microbial structure and activity of UASB granules treating different wastewater, Water Sci. Tech., 1994a, 30: 87.

    CAS  Google Scholar 

  13. Thaveesri, J., Liessens, B., Verstraete, W., Granular sludge growth under different reactor liquit surface tensions in lab-scale upflow anaerobic sludge blanket reactors treating wastewater from suger-beet procrssing, Appl. Environ. Microbiol., 1995c, 43: 1122.

    CAS  Google Scholar 

  14. Thaveesri, J., Daffonchio, D., Liessens, B. et al., Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics, Appl. Environ. Microbiol., 1995a, 61: 3681.

    PubMed  CAS  Google Scholar 

  15. Thaveesri, J., Gernaey, K., Kaonga, B. et al., Organic and ammonium nitrogen and oxygen in relation to granular sludge growth in lab-scale UASB reactors, Water Sci. Tech., 1995b, 30 (12): 43.

    Google Scholar 

  16. Souza, J. T., Foresti, E., Domestic sewage treatment in an upflow anaerobic sludge blanket-sequencing batch reactor system, Water Sci. Tech., 1996, 33 (3): 73.

    Article  Google Scholar 

  17. Kato, M. T., Field, J. A., Lettinga, G., The anaerobic treatment of low strength wastewaters in UASB and EGSB reactor, Water Sci. Tech., 1997, 36 (6–7): 375.

    Article  CAS  Google Scholar 

  18. Polpraset, C., Gnanadipathy, A., Treament of a domestic wastewater with UASB reactors, Water Sci. Tech., 1993, 27 (1): 195.

    Google Scholar 

  19. Ghyoot, W., Verstraete, W., Reduced sludge production in a two-stage membrane-assisted bioreactor, Water Research, 2002, 34: 205.

    Article  Google Scholar 

  20. Curtis, T. P., Craine, N. G., The comparison of the diversity of activated sludge plants, Water Sci. Tech., 1998, 37: 71.

    Article  CAS  Google Scholar 

  21. Eichner, C. A., Erb, R. W., Timmis, K. N. et al., Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community, Appl. Environ. Microbiol., 1999, 65: 102.

    PubMed  CAS  Google Scholar 

  22. Muyzer, G., Smalla, K., Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol., 1998, 73: 127.

    Article  CAS  Google Scholar 

  23. Van Elsas, J. D., Duarte, G. F., Rosado, A. S. et al., Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment, J. Microbiol. Methods, 1998, 32: 133.

    Article  Google Scholar 

  24. Sekiguchi, Y., Kamagata, Y., Syutsubo, K. et al., Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis, Microbiology, 1998, 144: 2655.

    PubMed  CAS  Google Scholar 

  25. Chan, O. C., Liu, W. T., Fang, H. H. P., Study of microbial community of brewery-treating granular sludge by denaturing gradient gel eletrophoresis of 16S rRNA gene, Water Sci. Tech., 2001, 43: 77.

    CAS  Google Scholar 

  26. Aiyuk, S., Amoako, J., Verstraete, W., Concurrent removal of carbon and nutrients from raw domestic sewage using the list integrated concept, Water Research, 2004 (in press).

  27. Boon, N., Goris, J., De Vos, P. et al., Bioaugmentation of activated sludge by an indigenous 3-chloroaniline degrading Comamonas testosteroni strain, 12gfp., Appl. Environ. Microbiol., 2000, 66: 2906.

    Article  PubMed  CAS  Google Scholar 

  28. Reysenbach, A. L., Giver, L. J., Wickham, G. S. et al., Differential amplification of rRNA genes by polymerase chain reaction, Appl. Environ. Microbiol., 1992, 58: 3417.

    PubMed  CAS  Google Scholar 

  29. Muyzer, G., Dewaal, E. C., Uitterlinden, A. G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of Polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol., 1993, 59: 695.

    PubMed  CAS  Google Scholar 

  30. Liu, W. T., Chan, O. C., Fang, H. H. P., Characterization of microbial community in granular sludge treating brewery wastewater, (Unpublished).

  31. Ahn, I.S., Kwon, J. C., Dependence of wastewater treatment efficiencies on treatment system and its bacterial community composition, to be published.

  32. Schlotelburg, C., Von Wintzingerode, F., Hauck, R. et al., Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia, Int. J. Syst. Evol. Microbiolloteburg, 2000, 1505.

  33. Gu, A. Z., Hedlund, B. P., Strand, S. E. et al., Characterization and comparison of community structure of a TCE—reducing and a cis-DCE-reducing culture using molecular methods to be published.

  34. Teske, A., Hinrichs, K. U., Edgcomb, V. et al., Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities, Appl. Environ. Microbiol., 2002, 68 (4): 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Dennis, P. C., Sleep, B. E., Fulthorpe, R. R. et al., Phylogenetic characterization of an anaerobic bacterial consortium capable of degrading saturation concentrations of tetrachloroethene, to be published.

  36. LaPara, T. M., Nakatsu, C. H., Pantea, L. et al., Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater, Appl. Environ. Microbiol., 2000, 66(9): 3951.

    Article  PubMed  CAS  Google Scholar 

  37. Oude Elferink, S. J., Maas, R. N., Harmsen, H. J. et al., Desulforhabdus amnigenus gen. nov. sp. nov, a sulfate reducer isolated from anaerobic granular sludge, Arch. Microbiol., 1995, 164(2): 119.

    Article  PubMed  CAS  Google Scholar 

  38. Bleui, C., Molecular analysis of microbial communities in sediments of water reservoirs (2002), to be published.

  39. Holmes, A. J., Tujula, N. A., Holley, M. et al., Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia, Environ. Microbiol., 2001, 3 (4): 256.

    Article  PubMed  CAS  Google Scholar 

  40. Grosskopf, R., Janssen, P. H., Liesack, W., Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval, Appl. Environ. Microbiol., 1998, 64: 960.

    PubMed  CAS  Google Scholar 

  41. Purdy, K. J., Munson, M. A., Nedwell, D. B. et al., Comparison of the molecular diversity of the methanogenic community at the brackish and marine ends of a UK estuary, FEMS Microbiol. Ecol., 2002, 39: 17.

    Article  CAS  PubMed  Google Scholar 

  42. Pender, S., Toomey, M., Carton, M. W. et al., Effect of sulphate on methanogenic population dynamics in anaerobic fs during long-term operation under mesophilic and thermophilic conditions, 2001 to be published.

  43. Williams, D., Haas, E. S., Brown, J. W., Surprising archaeal diversity in a municipal wastewater sludge, to be published.

  44. Cilia, V., Lafay, B., Christen, R., Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level, Mol. Biol. Evol., 1996, 13: 451.

    PubMed  CAS  Google Scholar 

  45. Vallaeys, T., Topp, E., Muyzer, G. et al., Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs, FEMS Microbiol. Ecol., 1997, 24: 279.

    Article  CAS  Google Scholar 

  46. Maaloe, O., Kjeldgaard, N. O., Control of Macromolecular Synthesis. Benjamin, New York, 1996.

  47. Kemp, P. F., Lee, S., LaRoche, J., Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl. Environ. Microbiol., 1993, 59: 2594.

    PubMed  CAS  Google Scholar 

  48. Godon, J. J., Zumstein, E., Dabert, P. et al., Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis, Appl. Environ. Microbiol., 1997, 63: 2802.

    PubMed  CAS  Google Scholar 

  49. Rocheleau, S., Greer, C. W., Lawrence, J. R. et al., Differentiation ofMethanosaeta concilii andMethanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescentin situ hybridization and confocal scanning laser microscopy, Appl. Environ. Microbiol., 1999, 65: 2222.

    PubMed  CAS  Google Scholar 

  50. Marchesi, J. R., Sato, T., Weightman, A. J. et al., Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA, Appl. Environ. Microbiol., 1998, 64: 795.

    PubMed  CAS  Google Scholar 

  51. Heuer, H., Krsek, M., Baker, P. et al., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients, Appl. Environ. Microbiol., 1997, 63: 3233.

    PubMed  CAS  Google Scholar 

  52. Lane, D. J., 16S/23S rRNA sequencing, in Nucleic acid Techniques in Bacterial Systematics, New York: John Wiley & Sons Ltd., 1991, 115–175.

    Google Scholar 

  53. Overas, L., Forney, L., Daae, F. L. et al., Distribution of bacterioplankton in meromictic lake sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-Amplified gene fragments coding for 16S rRNA, Appl. Environ. Microbiol., 2001, 63: 3367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Ying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Aiyuk, S., Xu, H. et al. Study of microbial community structures in UASB sludge treating municipal wastewater by denaturing gradient gel electrophoresis of 16S rDNA. Sci. China Ser. C.-Life Sci. 48 (Suppl 1), 128–135 (2005). https://doi.org/10.1007/BF02889810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889810

Keywords

Navigation