Skip to main content
Log in

Isolation, assay, biosynthesis, metabolism, uptake and translocation, and function of proline in plant cells and tissues

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The amino acid L-proline has been the subject of intensive research during the past ten to fifteen years. This stems from the observations that it incorporates into peptide linkage thereby serving as a precursor to peptidyl-bound L-hydroxyproline, a constituent of “extensin,” and that it accumulates when some plants are exposed to diverse biological and environmental stresses. The contents of selected papers which have been published during the last quarter of a century regarding the isolation, assay, biosynthesis, metabolism, transport and function of L-proline within various plant tissues and their cells are both interpreted and summarized in this review. Occasionally, relevant information from animal and bacterial systems concerning these topics is included. Hydroxyproline-containing proteins are not considered.

L-proline was reported to be a constituent of leaves as early as the 1950’s. Since then, it and its analogues have been extracted from the organs of a variety of plants. The analogues include: methyl-hydroxylproline; 4-methylene-DL-proline; L-azetidine-2-carboxylic acid; 2,3,cis-3,4-trans-dihydroxy-L-proline; L-pipecolic acid and 4-trans-hydroxypro-line. L-proline can be both detected and quantified by colorimetric, combined fluorometric-amino acid analyzer and gas Chromatographic procedures. L-proline may be synthesized from L-glutamic acid via the following biosynthetic pathway: L-glutamic acid\(\underrightarrow {\gamma - glutamic acid kinase}\) γ-glutamyl phosphate\(\underrightarrow {\gamma - glutamyl phosphate reductase}\) γ-glutamyl semialdehyde\(\underrightarrow {spontaneous cyclization}\) Δ′-pyrroline-5-Carboxylate (P5C)\(\underrightarrow {P5C reductase}\) L-proline. Proline can also originate from L-arginine and L-ornithine. Biosynthesis from the latter compound proceeds either through the γ-glutamyl semialdehyde and pyrroline-5-carboxylate pathway or alternatively a α-keto-δ-aminovaleric and pyrroline-2-carboxylate pathway. The metabolism of L-proline most likely involves the reverse of the biosynthetic pathway with an initial prolyl dehydrogenaseor prolyl oxidasemediated conversion of L-proline to Δ′-pyrroline-5-carboxylate. The metabolism of L-proline has been demonstrated to occur in excised tissues and cell free extracts, cell suspension cultures and reproductive structures. Little is known about the mechanism by which L-proline is taken up by cultured plant cells and excised tissues. Once within the plant Lproline can be translocated through the phloem at velocities similar to those for carbon dioxide assimilates. In addition to serving as a substrate for peptidyl-bound hydroxyproline, L-proline may function as an adaptation to diverse biological and environmental stresses, a cryoprotectant, a nitrogen pool, a precursor for chlorophyll synthesis upon relief of stress, a regulator together with L-histidine of fertility and sterility and/or a substrate for respiration.

Resume

Depuis ces quinze dernières années, l’amino-acide L-proline a été l’objet de recherches très intensives parce que l’on a observé que L-proline s’incorpores dans les liaisons peptidiques, et par ce moyen se sers de précurseur à la fraction peptidique L-hydroxyproline, un des constituants de “l’extensine,” et s’accumule lorsque les plantes sont soumise à des contraintes environmentales et biologique diverses. Le contenu d’un certain nombre d’articles qui furent publiés ce dernier quart de siècle traite de l’isolement, les essais en laboratoire, la biosynthèse, le métabolisme, le transport et les fonctions de la L-proline dans les cellules et les tissus variés de plante sont interprétés et résumé dans cette revue. Occasionnellement, des informations complémentaires relevant des systèmes animaux et bactériens jugés utiles ont été introduites. Les protéines contenant de l’hydroxyproline n’est pas envisagé ici.

Depuis le début des années mille neuf cent cinquante, la L-proline fut reconnue d’être un des constituants dans les feuilles. Depuis lors, L-proline ont été extraite, ainsi que ses analogues, d’organes de diverses sortes de plantes. Ses analogues comportent: la methyle-hydroxyle-proline; la 4-methylene DL-proline; l’acide L-azetidine-2-carboxylique; la 2,3, cis-3, 4-trans-dihydroxy-L-proline; l’acide L-pipécolique et l’hydroxyproline 4-trans. La L-proline peut être détectée et quantifié par la colorimétrie à l’analyse fluorométrique des acides aminés et par la Chromatographie en phase gazeuse. La L-proline peut être synthétisée de l’acide L-glutamique par les étapes biosynthétiques suivantes: acide L-glutamique\(\underrightarrow {acide \gamma - glutamique kinase}\) γ glutamyl phosphate\(\underrightarrow {\gamma - glutamyl phosphate reductase}\) γ glutamyl semialdéhyde\(\underrightarrow {cyclisation spontanee}\) Δ′-pyrroline-5-carboxylate (P5C)\(\underrightarrow {P5C reductase}\) L-proline. La proline peut aussi avoir son origine de Larginine ou de L-ornithine. La biosynthèse de cette dernière a lieu soit par voie du γ glutamyl semi-aldehyde et P5C, soit par celui des réaction biosynthétiques de l’acide γ-keto δ amino valérique et du pyrroline-2-carboxylate. Le métabolisme de la L-proline probablement inclut les étapes inverses de la biosynthèse avec une conversion initiale de la Lproline dans Δ′-pyrroline-5-carboxylate grâce à la prolyl déhydrogenase ou la prolyl oxidase. Le métabolisme de la L-proline a été démontré de survenir dans des tissus excisés, des extraits sans cellules, des cultures de suspension cellulaires et des structures reproductives. On ne sait que très peu du mécanisme par lequel la L-proline est incorporée dans les cultures cellulaires des plantes et des tissus excisés. Une fois dans la plante la L-proline peut être transportée dans le phloème à des vélocités semblable de celles des assimilais d’oxyde de carbone. Outre son utilité comme substrat pour la hydroxyproline, bondé avec la peptidyle la L-proline peut fonctionner comme une adaptation à des contraintes biologique et environmentales diverses, un cryoprotecteur, une reserve d’azote, un précurseur de la synthèse chlorophyllienne lorsque la contrainte est levée; un régulateur, avec la L-histidine, de la fertilité et de la stérilité et/ou un substrat respiratoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA :

(RS)-abscisic acid

ALA :

L-alanine

ASN :

L-asparagine

ARG :

L-arginine

ASP :

L-aspartic acid

AZC :

L-2-azetidine carboxylic acid

ATP :

adenosine triphosphate

CTP :

cytosine triphosphate

GLN :

glutamine

GABA :

γ-amino butyric acid

GLY :

L-glycine

GTP :

guanosine triphosphate

GLU :

L-glutamic acid

HYP :

4-trans-L-hydroxy-proline

ITP :

inosine triphosphate

KCN :

potassium cyanide

ILEU :

L-isoleucine

LEU :

L-leucine

LYS :

L-lysine

Km :

Michaelis constant

MET :

L-methionine

NAA :

naphthal-ene acetic acid

NADH :

reduced pyridine nucleotide

NH2OH:

hydroxlyamine

ORN :

L-ornithine

PEG :

polyethyleneglycol

PHE :

L-phenylalanine

P2C :

pyrroline-2-carbox-ylic acid

P5C :

pyrroline-5-carboxylic acid

pphm :

parts per hundred million

PRO :

L-proline

SER :

L-serine

THR :

L-threonine

VAL:

L-valine

TLC :

thin layer chromatog-raphy

UTP :

uridine triphosphate

UV :

ultravioletlight

π:

osmotic potential

Ψ:

water potential

Literature Cited

  • Aspinall, D., T. N. Singh andL. G. Paleg. 1973. Stress metabolism V. Abscisic acid and nitrogen metabolism in barley andLolium temulentum L. Aust. J. Biol. Sci.26: 319–327.

    CAS  Google Scholar 

  • Baich, A. 1969. Proline synthesis inEscherichia coli: A proline-inhibitable glutaraic acid kinase. Biochim. Biophys. Acta192: 462–467.

    PubMed  CAS  Google Scholar 

  • —. 1971. The biosynthesis of proline inEscherichia coli: Phosphate-dependent glutamatey semi-aldehyde dehydrogenase (NADP), the second enzyme in the pathway. Biochim. Biophys. Acta244: 129–134.

    PubMed  CAS  Google Scholar 

  • Bailey, R. W. andH. Kauss. 1974. Extraction of hydroxyproline-containing proteins and pectic substances from cell walls of growing and non-growing mungbean hypocotyl segments. Planta119: 233–245.

    Article  CAS  Google Scholar 

  • Barnard, R. A. andA. Oaks. 1970. Metabolism of proline in maize root tips. Can. J. Bot.48: 1155–1158.

    CAS  Google Scholar 

  • Barnett, N. M. andA. W. Naylor. 1966. Amino acid and protein metabolism in Bermuda grass during water stress. Pl. Physiol.41: 1222–1230.

    CAS  Google Scholar 

  • Bar-Nun, N. andA. Poljakoff-Mayber. 1977. Salinity stress and the content of proline in roots ofPisum sativum andTamarix tetragyna. Ann. Bot.41: 173–179.

    Google Scholar 

  • Bathurst, N. O. 1954. Amino-acids of grass pollen. J. Exp. Bot.5: 253–256.

    Article  CAS  Google Scholar 

  • Bellartz, S. 1956. Das Pollenschlauchwachstum nach Arteigener und Artfremder Bestäubung einiger solanaceen und die Inhaltsstoffe ihres Pollens und ihrer Griffel. Planta47: 588–612.

    Article  CAS  Google Scholar 

  • Bengston, C., B. Klockare, R. Klockare, S. Larsson andC. Sundqvist. 1978. The aftereffect of water stress on chlorophyll formation during greening and the levels of abscisic acid and proline in dark grown wheat seedlings. Physiol. Pl.43: 205–212.

    Article  Google Scholar 

  • Berman, H. M., E. L. McGandy, J. W. Burgner andR. L. Van Etten. 1969. The crystal and molecular structure of L-azetidine-2-carboxylic acid. A naturally-occurring homolog of proline. J. Amer. Chem. Soc.91: 6117–6182.

    Article  Google Scholar 

  • Blackburn, S. 1968. Amino acid determination. Methods and techniques. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Blum, A. andA. Ebercon. 1976. Genotypic responses inSorghum to drought stress. III. Free proline accumulation and drought resistance. Crop Sci.16: 428–431.

    Article  CAS  Google Scholar 

  • Boctor, F. N. 1971. An improved method for colorimetric determination of proline with isatin. Anal. Biochem.43: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Boggess, S. F., D. E. Koeppe andC. R. Stewart. 1978. Oxidation of proline by plant mitochondria. Pl. Physiol.62: 22–25.

    Article  CAS  Google Scholar 

  • — andC. R. Stewart. 1976. Contribution of arginine to proline accumulation in waterstressed barley leaves. Pl. Physiol.58: 796–797.

    CAS  Google Scholar 

  • ——,D. Aspinall andL. G. Paleg. 1976. Effect of water stress on proline synthesis from radioactive precursors. Pl. Physiol.58: 398–401.

    Article  CAS  Google Scholar 

  • Bohlen, P. andM. Mellet. 1979. Automated fluorometric amino acid analysis: The determination of proline and hydroxyproline. Anal. Biochem.94: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Breyhan, T., F. Heilinger andO. Fischnich. 1954. Über das Vorkommen und die Bedeutung des Proline in der Kartoffel. Landwirtsch. Forsch.12: 293–295.

    Google Scholar 

  • Britikov, E. A. andH. F. Linskens. 1970. Effect of proline on oxygen uptake by plant tissues. Fiz. Rast.19: 645–654.

    Google Scholar 

  • — andN. A. Musatova. 1964. Accumulation of free proline in pollen. Fiz. Rast.11: 464–472.

    CAS  Google Scholar 

  • —,J. Schrauwen andH. F. Linskens. 1970. Proline as a source of nitrogen in plant metabolism. Acta Bot. Neerl.19: 515–520.

    Google Scholar 

  • —,N. A. Musatova, S. V. Vladimirtseva andM. A. Protsenko. 1964. Proline in the reproductive system of plants. Pp. 77–85in H. F. Linskens (ed.). Pollen physiology and fertilization. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • —,S. V. Vladimirtseva andN. A. Musatova. 1965. Transformation of proline in germinating pollen and pistil tissues. Fiz. Rast.12: 953–967.

    CAS  Google Scholar 

  • Brown, L. M. andJ. A. Hellebust. 1978. Sorbitol and proline as intracellular osmotic solutes in the green algaStichococcus bacillaris. Can. J. Bot.56: 676–679.

    CAS  Google Scholar 

  • Brown, R. G. andW. C. Kimmins. 1977. Glycoproteins. Int. Rev. Biochem.13: 183–209.

    CAS  Google Scholar 

  • Bryant, M. andL. Fowden. 1958. Protein composition in relation to age of daffodil leaves. Ann. Bot.23: 65–74.

    Google Scholar 

  • Butts, W. C. 1972. Two-column gas chromatography of trimethylsilyl derivatives of biochemically significant compounds. Analytical Biochem.46: 187–199.

    Article  CAS  Google Scholar 

  • Cavalieri, A. J. andA. H. C. Huang. 1979. Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. Amer. J. Bot.66: 307–312.

    Article  CAS  Google Scholar 

  • Chao, Hai-Yen andW. V. Dashek. 1973. Hydroxyproline metabolism during mungbean and soya-bean seedling growth. Ann. Bot.37: 95–105.

    CAS  Google Scholar 

  • Chinard, F. P. 1952. Photometric estimation of proline and ornithine. J. Biol. Chem.199: 91–95.

    PubMed  CAS  Google Scholar 

  • Chrispeels, M. J. 1970. Biosynthesis of cell wall protein: Sequential hydroxylation of proline, glycosylation of hydroxyproline and secretion of the glycoprotein. Biochem. Biophys. Res. Commun.39: 732–737.

    Article  PubMed  CAS  Google Scholar 

  • —. 1976. Biosynthesis, intracellular transport, and secretion of extracellular macromolecules. Annual Rev. Pl. Physiol.27: 19–38.

    Article  CAS  Google Scholar 

  • Chu, T. M., D. Aspinall andL. G. Paleg. 1976. Stress metabolism. VIII. Specific ion effects on proline accummulation in barley. Aust. J. Pl. Physiol.3: 503–511.

    CAS  Google Scholar 

  • — andD. E. Sadava. 1974. Synthesis and secretion of proteins in plant cells: The hydroxyproline-rich glycoprotein of the cell wall. Pp. 131–152in Macromolecules regulating growth and development. The 30th Symposium of the Society for Developmental Biology. Academic Press, N.Y.

    Google Scholar 

  • Cleland, R. 1971. Cell wall extension. Annual Rev. Pl. Physiol.22: 197–222.

    Article  CAS  Google Scholar 

  • Dashek, W. V. 1966. The lily pollen tube: aspects of chemistry and nutrition in relation to fine structure. Ph.D. Dissertation, Marquette University. Milwaukee, Wisc.

    Google Scholar 

  • —. 1970. Synthesis and transport of hydroxyproline-rich components in suspension cultures of sycamore-maple cells. Pl. Physiol.46: 831–838.

    CAS  Google Scholar 

  • — andH. I. Harwood. 1974. Proline, hydroxyproline, and lily pollen tube elongation. Ann. Bot.38: 947–959.

    CAS  Google Scholar 

  • —— andW. G. Rosen. 1971. The significance of a wall-bound, hydroxyprolinerich glycopeptide in lily pollen tube elongation. Pp. 194–200in J. Heslop-Harrison (ed.). Pollen development physiology. Butterworths, London.

    Google Scholar 

  • —,D. M. Hayward, R. H. Johnson andR. R. Mills. 1979. Proline metabolism during pollen germination: labeling of cytoplasmic, wall and culture medium molecules. Pl. Physiol.63 (suppl.): 56.

    Google Scholar 

  • —,J. M. Krolak, N. Taylor, J. Joosten, R. Curd andR. R. Mills. 1978. Azetidineinduced suppression of proline uptake and incorporation accompanying inhibited pollen tube elongation. Pl. Physiol.61 (suppl.): 33.

    Google Scholar 

  • — andR. R. Mills. 1973. Lily pollen tube elongation in the presence of azetidine-2-carboxylic acid. Pl. Physiol.52 (suppl.): 308.

    Google Scholar 

  • ——. 1980. Azetidine-2-carboxylic acid and lily pollen tube elongation. Ann. Bot.45: 1–12.

    CAS  Google Scholar 

  • -and-. In press. Proline metabolism in germinatingLilium longiflorum cv ‘Ace’ pollen. I. Labeling of cytoplasmic, wall and growth medium macromolecules. Proc. VIth international symposium on advances in the cytophysiology of higher plant reproduction. Acta Soc. Bot. Poloniae.

  • — andW. G. Rosen. 1966. Electron microscopical localization of chemical components in the growth zone of lily pollen tubes. Protoplasma61: 192–204.

    Article  PubMed  CAS  Google Scholar 

  • deKort, C. A. D., A. K. M. Bartelink andR. R. Schuurmans. 1973. The significance of L-proline for oxidative metabolism in the flight muscles of the colorado beetleLeptinotarsa decemlineata. Insect. Biochem.3: 11–17.

    Article  Google Scholar 

  • Duranton, H. andM. Maille. 1962. Métabolisme de la proline chez le topinambouv. Ann. Physiol. Vég.4: 271–294.

    CAS  Google Scholar 

  • Durzan, D. J. 1973. Nitrogen metabolism ofPicea glauca V. Metabolism of uniformly labeled14C-L-proline and14C-L-glutamine by dormant buds in late fall. Can. J. Bot.51: 359–369.

    CAS  Google Scholar 

  • — andP. K. Ramaiah. 1971. The metabolism of L-proline by jack pine seedlings. Can J. Bot.49: 2163–2173.

    Article  CAS  Google Scholar 

  • — andF. C. Steward. 1963. The nitrogen metabolism and seasonal changes in shoots ofPicea glauca (Moench) Voss. Pl. Physiol.38 (suppl.): vi.

    Google Scholar 

  • Elliott, R. J. andD. L. Gardner. 1976. Proline determination with isatin, in the presence of amino acids. Anal. Biochem.70: 268–273.

    Article  PubMed  CAS  Google Scholar 

  • Fowden, L. 1956. Azetidine-2-carboxylic acid: a new cyclic amino acid occurring in plants. Biochem. J.64: 323.

    PubMed  CAS  Google Scholar 

  • —. 1959. Nitrogenous compounds and nitrogen metabolism in the Liliaceae. II. Changes in nitrogenous composition during the growth ofConvallaria andPolygonatum. Biochem. J.71: 643–648.

    PubMed  CAS  Google Scholar 

  • — andM. H. Richmond. 1963. Replacement of proline by azetidine-2-carboxylic acid during biosynthesis of protein. Biochim. Biophys. Acta71: 459–465.

    Article  CAS  Google Scholar 

  • — andF. C. Steward. 1957. Nitrogenous compounds and nitrogen metabolism in the Liliaceae I. The occurrence of soluble nitrogenous compounds. Ann. Bot.21: 53–67.

    Google Scholar 

  • Gamper, H. andV. Moses. 1974. Enzyme organization in the proline biosynthetic pathway ofEscherichia coli. Biochim. Biophys. Acta354: 75–87.

    PubMed  CAS  Google Scholar 

  • Gauger, M. A. andL. M. White. 1970. An automated estimation of proline in hydrolyzates. Anal. Biochem.35: 130–135.

    Article  PubMed  CAS  Google Scholar 

  • Gehrke, C. W. andH. Takeda. 1973. Gas-liquid Chromatographic studies on the twenty protein amino acids: A single column separation. J. Chromatogr.76: 63–75.

    Article  PubMed  CAS  Google Scholar 

  • —,D. Roach, R. W. Zumwalt, D. L. Stalling andL. L. Wall. 1968. Quantitative gasliquid chromatography of amino acids in proteins and biological substances: Macro, semimicro and micro methods. Analytical Biochemistry Laboratories, Inc., Columbia, MO.

    Google Scholar 

  • Giri, K. V., I. Gopa, K. L. Kirshnen, A. N. Radkakrishnan andC. S. Vaidyanathan. 1952. Proline and hydroxyproline in leaves. Nature170: 579–580.

    Article  PubMed  CAS  Google Scholar 

  • Godzik, S. andH. F. Linskens. 1974. Concentration changes of free amino acids in primary bean leaves after continuous and interrupted SO2 fumigation and recovery. Environ. Pollut.7: 25–38.

    Article  CAS  Google Scholar 

  • Gotelli, I. B. andR. Cleland. 1968. Differences in the occurrence and distribution of hydroxyproline-proteins among the algae. Amer. J. Bot.55: 907–914.

    Article  CAS  Google Scholar 

  • Gray, D. O. 1972. Trans-4-hydroxymethyl-D-proline fromEriobotrya japonica. Phytochem.11: 751–756.

    Article  CAS  Google Scholar 

  • — andL. Fowden. 1972. Isolation of 4-methylene-DL-proline fromEriobotrya japonica. Phytochem.11: 745–750.

    Article  CAS  Google Scholar 

  • —— andE. H. Everson. 1977. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci.17: 720–726.

    Article  Google Scholar 

  • Hanson, A. D., C. E. Nelsen, A. R. Pedersen andE. H. Everson. 1979. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance. Crop Sci.19: 489–493.

    Article  CAS  Google Scholar 

  • — andR. E. Tully. 1979a. Light stimulation of proline synthesis in water-stressed barley leaves. Planta145: 45–51.

    Article  CAS  Google Scholar 

  • ——. 1979b. Amino acids translocated from turgid and water-stressed barley leaves. II. Studies with13N and14C. Pl. Physiol.64: 467–471.

    CAS  Google Scholar 

  • Heber, U. 1958. Ursachen der Frostresistenz bei Winterweizen. II. Die Bedeutung von AminoSäuren und Peptiden für die Frostresistenz. Planta52: 431–446.

    Article  CAS  Google Scholar 

  • —,L. Tyankova andK. A. Santarius. 1973. Effects of freezing on biological membranes in vivo and in vitro. Acta Biochim. Biophys.291: 23–37.

    Article  CAS  Google Scholar 

  • Huang, A. H. C. andA. J. Cavalieri. 1979. Proline oxidase and water stress-induced proline accumulation in spinach leaves. Pl. Physiol.63: 531–535.

    CAS  Google Scholar 

  • Huber, W. 1974. Über den Einfluss von NaCl—oder Behandlung auf den Protein-metabolismus und einige weitere Enzyme des AminoSäurestoffwechsels in Keimlingen vonPennisetum typhoides. Planta121: 225–235.

    Article  CAS  Google Scholar 

  • Hulme, A. C. 1954. A new amino acid in the peel of apple fruits. Nature174: 1055–1056.

    Article  PubMed  CAS  Google Scholar 

  • — andF. C. Steward. 1955. Infra-red spectra of the new proline derivative from the apple. Nature175: 170–171.

    Article  Google Scholar 

  • Jäger, H. J. 1975. Wirkung von SO2-Begasung auf die Aktivität von Enzymen des AminoSäurestoffwechsels und den Gehalt freier Aminosäuren in unterschiedlich resistenten. Pflanzen Z. Pflkrankh. Pfl. Schultz.82: 139–148.

    Google Scholar 

  • — andE. Pahlich. 1972. Einfluß von SO2 auf den AminoSäurestoffwechsel von Erbsenkeimlingen. Oecologia9: 135–140.

    Article  Google Scholar 

  • Kaback, H. R. andT. F. Deuel. 1969. Proline uptake by disrupted membrane preparations fromEscherichia coli. Arch. Biochem. Biophys.132: 118–129.

    Article  PubMed  CAS  Google Scholar 

  • Karle, L., J. W. Daly andB. Witkop. 1969. 2,3-cis-3,4-trans-3,4-dihydroxy-L-proline: Mass spectrometry and X-ray analysis. Science164: 1401–1402.

    Article  PubMed  CAS  Google Scholar 

  • Krishna, R. V., P. Beilstein andT. Leisinger. 1979. Biosynthesis of proline inPseudomonas aeruginosa. Properties of γ-glutamyl phosphate reductase and Δ′-pyrroline-5-carboxylate reductase. Biochem. J.181: 223–230.

    PubMed  CAS  Google Scholar 

  • — andT. Leisinger. 1979. Biosynthesis of proline inPseudomonas aeruginosa. Partial purification and characterization of γ-glutamyl kinase. Biochem. J.181: 215–222.

    PubMed  CAS  Google Scholar 

  • Kristensen, I. andP. O. Larsen. 1974. Azetidine-2-carboxylic acid derivatives from seeds ofFagus silvatica L. and a revised structure for nicotinamine. Phytochem.13: 2791–2798.

    Article  CAS  Google Scholar 

  • Krolak, J. M., N. Taylor, W. V. Dashek andR. R. Mills. 1978. Azetidine-2-carboxylic acid-induced suppression of14C-proline incorporation into cytoplasmic macromolecules and cell walls ofLilium longiflorum pollen. Pp. 62–71in C. P. Malik (ed.). Advances in plant reproductive physiology. Kalyani Publishers, New Delhi, India.

    Google Scholar 

  • Kuttan, R. andA. N. Radhakrishnan. 1970. The biosynthesis of cis-4-hydroxy-L-proline in sandal (Santalum album L.). Biochem. J.117: 1015–1017.

    PubMed  CAS  Google Scholar 

  • Lamport, D. T. A. 1965. The protein component of primary cell walls. Adv. Bot. Res.2: 151–218.

    CAS  Google Scholar 

  • —. 1969. The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochem.8: 1155–1163.

    Article  CAS  Google Scholar 

  • —. 1970. Cell wall metabolism. Annual Rev. Pl. Phys.21: 235–270.

    Article  CAS  Google Scholar 

  • —. 1974. The role of hydroxyproline-rich proteins in the extracellular matrix of plants. Pp. 113–130in E. D. Hay, T. J. King, and J. Papconstantiou (eds.). Macromolecules regulating growth and development. The 30th symposium of The Society for Developmental Biology, Academic Press, N.Y.

    Google Scholar 

  • LeSaint, A. M. 1958. Comparaison de la résistance au froid de jeunes plantes de pois étiolées ou chlorophyllienes. Rev. Gen. Bot.65: 471–477.

    Google Scholar 

  • -. 1966. Observations physiologiques sur le gel et l’endurcissement au gel chez le chou de Milan. Thèses présenté à la faculté des sciences de l’Université de Paris, 93 pp.

  • LeSaint-Quervel, A. M. 1960. Études des variations comparées des acides aminés libres et des glucides solubles, au cours de de l’acquisition et de la perte de l’aptitude à résister au gel chez le chou de Milan. C.R. Acad. Sci. Paris251: 1403–1405.

    Google Scholar 

  • —. 1969. Corrélations entre la résistance au gel, l’eclaivement et la teneur en proline libre chez le chou de Milan Cult. Pontoise. C. R. Acad. Sci. Paris269: 1423–1426.

    Google Scholar 

  • Levitt, J. 1972. Responses of plants to environmental stresses. Academic Press, N.Y.

    Google Scholar 

  • Liu, M. S. andJ. A. Hellebust. 1976a. Effects of salinity changes on growth and metabolism of the marine centric diatomCyclotella cryptica. Can. J. Bot.54: 930–937.

    CAS  Google Scholar 

  • ——. 1976b. Effects of salinity and osmolarity of the medium on amino acid metabolism inCyclotella cryptica. Can. J. Bot.54: 938–948.

    CAS  Google Scholar 

  • ——. 1976c. Regulation of proline metabolism in the marine centric diatomCyclotella cryptica. Can. J. Bot.54: 949–959.

    CAS  Google Scholar 

  • Lu, T-S. andM. Mazelis. 1975. L-ornithine: 2-oxoacid amino-transferase from squash (Cucurbita pepo L.) cotyledons: Purification and properties. Pl. Physiol.55: 502–506.

    CAS  Google Scholar 

  • Lyndon, R. F. andF. C. Steward. 1963. The incorporation of14C-proline into the proteins of growing cells. I. Evidence of synthesis in different proteins and cellular components. J. Exp. Bot.14: 42–55.

    Article  CAS  Google Scholar 

  • Malhotra, S. S. andS. K. Sarkar. 1979. Effects of sulphur dioxide on sugar and free amino acid content of pine seedlings. Physiol. Pl.47: 223–228.

    Article  CAS  Google Scholar 

  • Markowski, A., J. Mysczkowski andJ. Lebek. 1962. Preliminary investigations on changes in nitrogen compounds of wheat embryos in the course of germination under various temperature conditions. Bull. Acad. Pol. Sci. Cl. V.10: 145–150.

    CAS  Google Scholar 

  • Mazelis, M. andR. K. Creveling. 1978. 5-oxoprolinase (L-pyroglutamate hydrolase) in higher plants. Partial purification and characterization of the wheat germ enzyme. Pl. Physiol.62: 798–801.

    CAS  Google Scholar 

  • — andL. Fowden. 1969. Conversion of ornithine into proline by enzymes from germinating peanut cotyledons. Phytochem.8: 801–809.

    Article  CAS  Google Scholar 

  • ——. 1971. The metabolism of proline in higher plants. II. L-proline dehydrogenase from cotyledons of germinating peanut (Arachis hypogaea L.) seedlings. J. Exp. Bot.22: 137–145.

    Article  CAS  Google Scholar 

  • McDonald, M. 1973. Isolation of pipecolic acid from the tubers of leaf roll virus infected potato plants. Z. Pflanzenphysiol.73: 371–375.

    Google Scholar 

  • McNamer, A. D. andC. R. Stewart. 1974. Nicotinamide adenine dinucleotide-dependent proline dehydrogenase inChlorella. Pl. Physiol.53: 440–444.

    CAS  Google Scholar 

  • Meister, A., A. N. Radhakrishnan andS. D. Buckley. 1957. Enzymatic synthesis of Lpipecolic acid and L-proline. J. Biol. Chem.229:789–800.

    PubMed  CAS  Google Scholar 

  • Messer, M. 1961. Interference by amino acids and peptides with photometric estimation of proline. Anal. Biochem.2: 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Mestichelli, L. J. J., R. N. Gupta andI. D. Spenser. 1979. The biosynthetic route from ornithine to proline. J. Biol. Chem.254: 640–647.

    PubMed  CAS  Google Scholar 

  • Miler, P. M. andC. R. Stewart. 1976. Pyrroline-5-carboxylic acid reductase from soybean leaves. Phytochem.15: 1855–1857.

    Article  CAS  Google Scholar 

  • Mitra, R., R. D. Gross andJ. E. Varner. 1975. An intact tissue assay for enzymes that labilize C-H bonds. Anal. Biochem.64: 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Mumford, R. A., H. Lipke andD. A. Laufer. 1972. Ozone-induced changes in corn pollen. Environmental Science and Technology6: 427–430.

    Article  CAS  Google Scholar 

  • Nakajima, T. andB. E. Volcani. 1969. 3,4-dehydroxyproline: a new amino acid in diatom cell walls. Science164: 1400–1401.

    Article  PubMed  CAS  Google Scholar 

  • Niederwieser, A. 1975. Chromatography of amino acids and oligopeptides. Pp. 393–465in E. Heftmann (ed.). Chromatography. A laboratory handbook of Chromatographic and electrophoretic methods. Van Nostrand Reinhold Co., New York.

    Google Scholar 

  • — andG. Pataki. 1971. New techniques in amino acid, peptide, and protein analysis. Ann Arbor Science Publishers, Inc., Ann Arbor.

    Google Scholar 

  • Noguchi, M., A. Koiwai andE. Tamaki. 1966. Studies on nitrogen metabolism in tobacco plants.VII. Δ′-pyrroline-5-carboxylate reductase from tobacco leaves. Agr. Biol. Chem.30: 452–456.

    CAS  Google Scholar 

  • Northcote, D. H. 1972. Chemistry of the plant cell wall. Annual Rev. Pl. Physiol.23: 113–132.

    Article  CAS  Google Scholar 

  • Oaks, A. 1966. Transport of amino acids to the maize root. Pl. Physiol.41: 173–180.

    CAS  Google Scholar 

  • —,D. J. Mitchell, R. A. Barnard andF. J. Johnson. 1970. The regulation of proline biosynthesis in maize roots. Can. J. Bot.48: 2249–2258.

    CAS  Google Scholar 

  • Olson, A. C. 1964. Proteins and plant cell walls. Proline to hydroxyproline in tobacco suspension cultures. Pl. Physiol.39: 543–550.

    CAS  Google Scholar 

  • Ordal, G. W., D. P. Villani, R. A. Nicholas andF. G. Hamel. 1978. Independence of proline chemotaxis and transport inBacillus subtilis. J. Biol. Chem.253: 4916–4919.

    PubMed  CAS  Google Scholar 

  • Orlowski, M. andA. Meister. 1970. The γ-glutamyl cycle: a possible transport system for amino acids. Proc. Nat. Acad. Sci. USA67: 1248–1255.

    Article  PubMed  CAS  Google Scholar 

  • Ostaplyuk, E. D. K. 1967. A physiological characterization of the frost resistance of winter barley. Rost. Ustoich. Rast.3: 203–209.

    Google Scholar 

  • Perdrizet, E. 1963. Etude des variations du métabolisme des feuilles de pommes de terre provoquées par le virus de l’anvirolement durant les premiers stades de l’infection. C. R. Acad. Sci. Paris257: 3208–3211.

    CAS  Google Scholar 

  • Pope, D. 1977. Relationships between hydroxyproline-containing proteins secreted into the cell wall and medium by suspension-culturedAcer pseudoplatanus cells. Pl. Physiol.59: 894–900.

    CAS  Google Scholar 

  • Protsenko, D. F. andE. A. Rubanyuk. 1967. Amino acid metabolism in winter rye and wheat during the overwintering period. Rost. Ustoich. Rast. 5b3: 161–169.

    Google Scholar 

  • Radhakrishnan, A. N. andK. V. Giri. 1954. The isolation of allohydroxy-L-proline from sandal (Santulum album L.). Biochem. J.58: 57–61.

    PubMed  CAS  Google Scholar 

  • Rajagopal, V. andA. S. Andersen. 1978. Does abscisic acid influence proline accumulation in stressed leaves? Planta143: 85–88.

    Article  CAS  Google Scholar 

  • Rena, A. B. andW. E. Splittstoesser. 1974. The metabolism of proline in cotyledons of pumpkin (Cucurbita moschata). Pl. Cell Physiol.15: 681–686.

    CAS  Google Scholar 

  • Sadava, D. andM. J. Chrispeels. 1969. Cell wall protein in plants: autoradiographic evidence. Science165: 299–300.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1971. Intracellular site of proline hydroxylation in plant cells. Biochem.10: 4290–4294.

    Article  CAS  Google Scholar 

  • — andB. E. Volcani. 1977. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Formation of hydroxyproline and dihydroxyproline inNitzschia angularis. Planta135: 7–11.

    Article  CAS  Google Scholar 

  • Schwencke, J. andN. Magaña-Schwencke. 1969. Depression of a proline transport system inSaccharomyces chevalieri by nitrogen starvation. Biochim. Biophys. Acta173: 302–312.

    Article  PubMed  CAS  Google Scholar 

  • Seitz, E. W. andR. M. Hochster. 1964. Free proline in normal and in crown-gall tumor tissue of tomato and tobacco. Life Sci.3: 1033–1037.

    Article  CAS  Google Scholar 

  • Shvedskaya, Z. M. andA. S. Kruzhilin. 1966. Changes in proline content during vernalization and differentiation of the growth points in biennial and winter plants. Fiziol. Rast.13: 748–755.

    Google Scholar 

  • Simpson, E., J. Burton andJ. E. Varner. 1976. Proline metabolism of oat seedlings. Pl. Physiol.57 (suppl.): 154.

    Google Scholar 

  • Singh, T. N., D. Aspinall andL. G. Paleg. 1972. Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature236: 188–190.

    Article  CAS  Google Scholar 

  • Soldatini, G. F., I. Ziegler andH. Ziegler. 1978. Sulfite: Preferential sulfur source and modifier of CO2 fixation inChlorella vulgaris. Planta143: 225–231.

    CAS  Google Scholar 

  • Splittstoesser, S. A. andW. E. Splittstoesser. 1973. Pyrroline-5-carboxylate reductase fromCucurbita cotyledons. Phytochem.12: 1565–1568.

    Article  CAS  Google Scholar 

  • Stein, S., P. Böhlen, J. Stone, W. Dairman andS. Udenfriend. 1973. Amino acid analysis with fluorescamine at the picomole level. Arch. Biochem. Biophys.155: 202–212.

    Article  PubMed  CAS  Google Scholar 

  • Steward, F. C. andL. O. Chang. 1963. The incorporation of14C-proline into the proteins of growing cells. II. A note on evidence from cultured carrot expiants by acrylamide gel electrophoresis. J. Exp. Bot.14: 379–386.

    Article  CAS  Google Scholar 

  • —,H. W. Israel andM. M. Salpepter. 1967. The labeling of carrot cells with H3-proline: is there a cell wall protein? Proc. Nat. Acad. Sci. USA58: 541–544.

    Article  PubMed  CAS  Google Scholar 

  • — andJ. K. Pollard. 1958.14C-proline and hydroxyproline in the protein metabolism of plants: an episode in the relation of metabolism to cell growth and morphogenetics. Nature2639: 828–834.

    Article  Google Scholar 

  • ——,A. A. Patchett andB. Witkop. 1958. The effects of selected nitrogen compounds on the growth of plant tissue cultures. Biochim. Biophys. Acta28: 308–317.

    Article  PubMed  CAS  Google Scholar 

  • —,J. F. Thompson, F. K. Millar, M. D. Thomas andR. H. Hendricks. 1951. The amino acid composition of alfalfa revealed by paper chromatography with special reference to compounds labeled with S35. Pl. Physiol.26: 123–135.

    CAS  Google Scholar 

  • Stewart, C. R. 1972a. The effect of wilting on proline metabolism in excised bean leaves in the dark. Pl. Physiol.51: 508–511.

    Article  Google Scholar 

  • —. 1972b. Effects of proline and carbohydrates on the metabolism of exogenous proline by excised bean leaves in the dark. Pl. Physiol.50: 551–555.

    Article  CAS  Google Scholar 

  • —. 1972c. Proline content and metabolism curing rehydration of wilted excised leaves in the dark. Pl. Physiol.50: 679–681.

    CAS  Google Scholar 

  • —. 1978. Role of carbohydrates in proline accumulation in wilted barley leaves. Pl. Physiol.61: 775–778.

    CAS  Google Scholar 

  • — andH. Beevers. 1967. Gluconeogenesis from amino acids in germinating castor bean endosperm and its role in transport to the embryo. Pl. Physiol.42: 1587–1595.

    Article  CAS  Google Scholar 

  • — andS. F. Boggess. 1978. Metabolism of 5-3H proline by barley leaves and its use in measuring the effects of water stress on proline oxidation. Pl. Physiol.61: 654–657.

    CAS  Google Scholar 

  • ——,D. Aspinall andL. G. Paleg. 1977. Inhibition of proline oxidation by water stress. Pl. Physiol.69: 930–932.

    Google Scholar 

  • — andE. Y. Lai. 1974. Δ′-pyrroline-5-carboxylic acid dehydrogenase in mitochondrial preparations from plant seedlings. Pl. Sci. Letters3: 173–181.

    Article  CAS  Google Scholar 

  • — andJ. A. Lee. 1974. The role of proline accumulation in halophytes. Planta120: 279–289.

    Article  CAS  Google Scholar 

  • —,C. J. Morris andJ. F. Thompson. 1966. Changes in amino acid content of excised leaves during incubation. I. Role of sugar in the accumulation of proline in wilted leaves. Pl. Physiol.41: 1585–1590.

    CAS  Google Scholar 

  • Sung, M. L. andL. Fowden. 1969. Azetidine-2-carboxylic acid from the legumeDelonix regia. Phytochem.8: 2095.

    Article  CAS  Google Scholar 

  • Thompson, J. F., C. R. Stewart andC. J. Morris. 1966. Changes in amino acid content of excised leaves during incubation. I. The effect of water content of leaves and atmospheric oxygen level. Pl. Physiol.41: 1578–1584.

    Article  CAS  Google Scholar 

  • Treichel, S. 1975. The effect of NaCl on the concentration of proline in different halophytes. Z. Pflanzenphysiol.76: 56–68.

    CAS  Google Scholar 

  • Troll, W. andJ. Lindsley. 1955. A photometric method for the determination of proline. J. Biol. Chem.215: 655–660.

    PubMed  CAS  Google Scholar 

  • Troxler, R. F. andA. S. Brown. 1974. Metabolism of L-azetidine-2-carboxylic acid in the algaCyanidium caldarium. Biochim. Biophys. Acta366: 341–349.

    PubMed  CAS  Google Scholar 

  • Tully, R. E., A. D. Hanson andC. E. Nelson. 1979. Proline accumulation in water-stressed barley leaves in relation to translocation and the nitrogen budget. Pl. Physiol.63: 518–523.

    Article  CAS  Google Scholar 

  • Tupy, J. 1963. Free amino-acids in apple pollen from the point of view of its fertility. Biol. Plant. (Praha)5: 154–160.

    CAS  Google Scholar 

  • —. 1964. Metabolism of proline in styles and pollen tubes ofNicotiana alata. Pp. 86–94in H. F. Linskens (ed.). Pollen physiology and fertilization. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Urbach, G. 1955. A new amino-acid from apples. Nature175: 170–171.

    Article  PubMed  CAS  Google Scholar 

  • Vallee, D., S. J. Downing andJ. M. Phang. 1973. Proline inhibition of pyrroline-5-carboxylate reductase: Differences in enzymes obtained from animal and tissue culture sources. Biochem. Biophys. Res. Commun.54: 1418–1424.

    Article  Google Scholar 

  • Van Der Werf, P., M. Orlowski andA. Meister. 1971. Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine triphosphate to adenosine diphosphate, a reaction in the γ-glutamyl cycle. Proc. Nat. Acad. Sci. USA68: 2982–2985.

    Article  PubMed  Google Scholar 

  • Vanetten, C. H., R. W. Miller, F. R. Earle, I. A. Wolff andQ. Jones. 1961. Hydroxyproline content of seed meals and distribution of the amino acid in kernel, seed coat and pericarps. J. Agr. Food Chem.9: 433–435.

    Article  CAS  Google Scholar 

  • ——,I. A. Wolff andQ. Jones. 1963. Amino acid composition of seeds from 200 angiospermous plant species. J. Agr. Food Chem.11: 399–410.

    Article  CAS  Google Scholar 

  • Virtanen, A. I. andS. Kari. 1955. Free amino acids in pollen. Acta Chem. Scand.9: 1548–1551.

    CAS  Google Scholar 

  • Wang, D. 1968. Metabolism of14C-labeled proline in higher plants. Contrib. Boyce Thompson Inst.24: 117–122.

    CAS  Google Scholar 

  • Withers, L. A. andP. J. King. 1979. Proline: a novel cryoprotectant for the freeze preservation of cultured cells ofZea mays L. Pl. Physiol.64: 675–678.

    CAS  Google Scholar 

  • Wrench, P., L. Wright, C. J. Brady andR. W. Hinde. 1977. The source of carbon for proline synthesis in osmotically stressed artichoke tuber slices. Austral. J. Pl. Physiol.4:703–711.

    Article  CAS  Google Scholar 

  • Yelenosky, G. 1979. Accumulation of free proline in citrus leaves during cold hardening of young trees in controlled temperature regimes. Pl. Physiol.64: 425–427.

    CAS  Google Scholar 

  • Ziganigirov, A. M. 1968. The morphological periodicity and winter hardiness of the dogrose. Tr. Inst. Ekol. Rast. Zhivotn. Ural. Fil. Akad. Nauk. SSSR62: 83–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reprints of this issue [47(3)] may be obtained from: Publications Office, The New York Botanical Garden, Bronx, NY 10458, USA. PRICE (includes postage and handling fee):U.S. ORDERS: $8.75;NON-U.S. ORDERS: $9.50. (Payment in U.S. currency drawn on a U.S. bank. Thank you.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashek, W.V., Erickson, S.S. Isolation, assay, biosynthesis, metabolism, uptake and translocation, and function of proline in plant cells and tissues. Bot. Rev 47, 349–385 (1981). https://doi.org/10.1007/BF02860578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860578

Keywords

Navigation