Skip to main content
Log in

Major improvements in biolistic transformation of suspension-cultured tobacco cells

  • Regular Papers
  • Published:
In Vitro – Plant Aims and scope Submit manuscript

Summary

Suspension cultures of the NT1 line ofNicotiana tabacum L. were used as a model system to study plant biolistic transformation, because of their uniformity, rapid growth, and ease of handling. The β-glucuronidase gene and the neomycin phosphotransferase genes were used to assay transient and stable transformation. Numerous factors were studied and optimized, such that the frequency of transformation was increased roughly 60-fold for transient transformants and 20-fold for stable transformants. Both biological parameters (the promoter used to drive gene expression, osmotic preconditioning and posbombardment handling of the cells) and physical parameters of the bombardment process (particle acceleration device and accelerator parameters) were tested. The factors that increased transformation rates the most were promoter strength, use of a helium-driven particle accelerator, and osmotic preconditioning of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armaleo, D.; Ye, G. N.; Klein, T. M., et al. Biolistic nuclear transformation ofSaccharomyces cerevisiae and other fungi. Curr. Genet. 17:97–103; 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Beck, E.; Ludwig, G.; Awerswald, W. A., et al. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:324–336; 1982.

    Article  Google Scholar 

  3. Belefant, H.; Fong, F. Abscisic acid ELISA: organic acid interference. Plant Physiol. 91:1467–1470; 1989.

    PubMed  CAS  Google Scholar 

  4. Datla, R. S. S.; Hammerlindl, J. K.; Pelcher, L. E., et al. A bifunctional gene fusion between neomycin phosphotransferase and β-glucuronidase: a broad spectrum genetic marker for plants. UCLA Symposium on Molecular and Cellular Biology. J. Cell. Biochem. Suppl. 14E:279; 1990.

    Google Scholar 

  5. Finer, J. J.; McMullen, M. D. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 8:586–589; 1990.

    Article  Google Scholar 

  6. Fromm, M. E.; Morrish, F.; Armstrong, C., et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/technology 8:833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Gordon-Kamm, W. J.; Spencer, T. M.; O’Brien, J. V., et al. Transformation of maize using microprojectile bombardment: an update and perspective. In Vitro Cell. Dev. Biol. Plant 27:21–27; 1991.

    Google Scholar 

  9. Iida, A.; Seki, M.; Kamada, M., et al. Gene delivery into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theor. Appl. Genet. 80:813–816; 1990.

    Article  Google Scholar 

  10. Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  11. Johnston, S. A.; Reidy, M.; DeVit, M. J., et al. Biolistic transformation of animal tissue. In Vitro Cell. Dev. Biol. Plant 27P:11–14; 1991.

    CAS  Google Scholar 

  12. Kandler, O.; Hopf, H. Oligosaccharides based on sucrose (sucrosyl oligosaccharides). In: Loewus, F. A.; Tanner, W., eds. Plant carbohydrates I. Encyclopedia of plant physiology new series, vol 13A. New York: Springer Verlag; 1982:348–383.

    Google Scholar 

  13. Kartha, K. K.; Chibbar, R. N.; Georges, F., et al. Transient expression of chloramphenicol acetyltransferase (CAT) gene in barley cell cultures and immature embryos through microprojectile bombardment. Plant Cell Rep. 8:429–432; 1989.

    Article  CAS  Google Scholar 

  14. Klein, T. M.; Fromm, M.; Weissinger, A., et al. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc. Natl. Acad. Sci. USA 85:4305–4309; 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Klein, T. M.; Gradziel, T.; Fromm, M. E., et al. Factors influencing gene delivery intoZea mays cells by high-velocity microprojectiles. Bio/technology 6:559–563; 1988.

    Article  CAS  Google Scholar 

  16. Klein, T. M.; Harper, E. C.; Svab, Z., et al. Stable genetic transformation of intactNicotiana cells by the particle bombardment process. Proc. Natl. Acad. Sci. USA 85:8502–8505; 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Klein, T. M.; Kornstein, L.; Sanford, J. C., et al. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91:440–444; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Klein, T. M.; Wolf, E. D.; Wu, R., et al. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73; 1987.

    Article  CAS  Google Scholar 

  19. McCabe, D. E.; Swain, W. F.; Martinell, B. J., et al. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/technology 6:923–926; 1988.

    Article  Google Scholar 

  20. McElroy, D.; Zhang, W.; Cao, J., et al. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171; 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Mendel, R. R.; Muller, B.; Schulze, J., et al. Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor. Appl. Genet. 78:31–34; 1989.

    Article  CAS  Google Scholar 

  22. Morikawa, H.; Iida, A.; Yamada, Y. Transient expression of foreign genes in plant cells and tissues obtained by a simple biolistic device (particle gun). Appl. Microbiol. Biotechnol. 31:320–322; 1989.

    Article  CAS  Google Scholar 

  23. Negrutiu, I.; Shillito, R.; Potrykus, I., et al. Hybrid genes in the analysis of transformation conditions. Plant Mol. Biol. 8:363–373; 1987.

    Article  CAS  Google Scholar 

  24. Oard, J. H.; Paige, D. F.; Simmonds, J. A., et al. Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiol. 92:334–339; 1990.

    PubMed  CAS  Google Scholar 

  25. Paszty, C.; Lurquin, P. F. Improved plant protoplast plating/selection technique for quantitation of transformation frequencies. BioTechniques 5:716–718; 1987.

    Google Scholar 

  26. Russell, J. A.; DeBoer, D. L.; McCown, B. H. Moderation of osmotic stress in plant protoplast systems by population density. In Vitro Cell. Dev. Biol. 21:25A; 1985.

    Google Scholar 

  27. Russell, J. A.; Roy, M. K.; Sanford, J. C. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98:1050–1056; 1992.

    PubMed  CAS  Google Scholar 

  28. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989:1.21–1.52.

    Google Scholar 

  29. Sanford, J. C. The biolistic process. Trends Biotechnol. 6:229–302; 1988.

    Article  Google Scholar 

  30. Sanford, J. C. Biolistic plant transformation. Physiol. Plant. 79:206–209; 1990.

    Article  CAS  Google Scholar 

  31. Sanford, J. C.; DeVit, M. J.; Russell, J. A., et al. An improved, helium-driven biolistic device. Technique 3:3–16; 1991.

    CAS  Google Scholar 

  32. Sanford, J. C.; Smith, F. D.; Russell, J. A. Optimizing the biolistic process for different biological applications. Methods Enzymol. In press; 1992.

  33. Shark, K. B.; Smith, F. D.; Harpending, P. R., et al. Biolistic transformation of a prokaryote,Bacillus megaterium. Appl. Environ. Microbiol. 57:480–485; 1991.

    PubMed  CAS  Google Scholar 

  34. Shillito, R. D.; Saul, M. W.; Paszkowski, J., et al. High efficiency direct gene transfer to plants. Bio/technology 3:1099–1103; 1985.

    Article  Google Scholar 

  35. Smith, F. D.; Harpending, P. R.; Sanford, J. C. Biolistic transformation of prokaryotes—factors that effect biolistic transformation of very small cells. J. Gen. Microbiol. 138:239–248; 1992.

    PubMed  CAS  Google Scholar 

  36. Spencer, T. M.; Gordon-Kamm, W. J.; Daines, R. J., et al. Bialaphos selection of stable transformants from maize cell culture. Theor. Appl. Genet. 79:625–631; 1990.

    Article  CAS  Google Scholar 

  37. Vasil, V.; Brown, S. M.; Re D., et al. Stably transformed callus lines from microprojectile bombardment of suspension cultures of wheat. Bio/technology 9:743–747; 1991.

    Article  CAS  Google Scholar 

  38. Viera, J.; Messing, J. Production of single-stranded plasmid DNA. Methods Enzymol. 153:3–11; 1987.

    Google Scholar 

  39. Wang, Y. C.; Klein, T. M.; Fromm, M., et al. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol. Biol. 11:433–439; 1988.

    Article  CAS  Google Scholar 

  40. Ye, G. N.; Daniell, H.; Sanford, J. C. Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Mol. Biol. 15:809–819; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, J.A., Roy, M.K. & Sanford, J.C. Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell Dev Biol –Plant 28, 97–105 (1992). https://doi.org/10.1007/BF02823026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823026

Key words

Navigation