Skip to main content
Log in

l-Deprenyl induces aromaticl-amino acid decarboxylase (AADC) mRNA in the rat substantia nigra and ventral tegmentum

Anin situ hybridization study

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

l-Deprenyl is a complex drug, and number of mechanisms have been proposed to explain its effects. These include blockade of dopamine metabolism, amplification of dopamine responses, induction of superoxide dismutase or delaying apoptosis. Usingin situ hybridization techniques, we have shown thatl-deprenyl (5–10 mg/kg intraperitoneally, killed after 24 h) increases aromaticl-amino acid decarboxylase (AADC) mRNA levels in rat substantia nigraventral tegmental area. In human brain tissue, AADC is present at low levels, suggesting a possible rate-limiting role in monoamine synthesis. This is particularly important in parkinsonian patients, since the therapeutic efficacy ofl-DOPA is attributed to its enzymatic decarboxylation to dopamine. The present findings support that one of the effects ofl-deprenyl may be to facilitate the decarboxylation ofl-DOPA by increasing the availability of AADC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

l-DOPA:

3,4-dihydroxyphenylalanine

MAO B:

monoamine oxidase type B

AADC:

aromaticl-amino acid decarboxylase

References

  • Birkmayer W., Riederer P., Ambrozi and Youdim M. B. (1977) Implications of combined treatment with “Madopar” andl-deprenyl in Parkinson’s disease, a long term study.Lancet 1, 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Carrillo M., Kanai M., Nokubo M., and Kitani K. (1991) (−)-Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats.Life Sci. 48, 517–521.

    Article  PubMed  CAS  Google Scholar 

  • Cho S., Duchemin A.-M., Neff N. H., and Hadjiconstantinou M. (1996) Modulation of tyrosine hydroxylase and aromaticl-amino acid decarboxylase after inhibiting monoamine oxidase-A.Eur. J. Pharmacol. 314, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Eaton M. J., Gudehithlu K. P., Silvia C. P., Quach T., Hadjiconstantinou M., and Neff N. H. (1993) Distribution of aromatic L-amino acid decarboxylase mRNA in mouse brain by in situ hybridization histology.J. Comp. Neurol. 337, 640–654.

    Article  PubMed  CAS  Google Scholar 

  • Gibson C. J. (1987) Inhibition of MAO B, but not MAO A, blocks DSP-4 toxicity on central NE neurons.Eur. J. Pharmacol. 141, 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Glover V., Sandler M., and Owen F. (1977) Dopamine is a monoamine oxidase B substrate in man.Nature 265, 80–81.

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O. (1966) Dopamine (3-hydroxytyramine) and brain function.Pharmacol. Rev. 18, 925–964.

    PubMed  CAS  Google Scholar 

  • Jaeger C. B., Rugiero D. A., Albert V. R., Park D. H., Joh T. H., and Reis D. J. (1984) Aromatic L-amino acid decarboxylase in the rat brain: immunocytochemical localization in neurons of the brain stem.Neuroscience 11, 691–713.

    Article  PubMed  CAS  Google Scholar 

  • Karoum F., Chuang L. W., Eisler T., Calne D. B., Liebowitz M. R., Quintin F. M., et al. (1982) Metabolism of (−)-deprenyl to amphetamine and methamphetamine may be responsible for deprenyl’s therapeutic benefit: A biochemical assessment.Neurology 32, 503–509.

    PubMed  CAS  Google Scholar 

  • Knoll J. (1988) Extension of life span of rats by long-term (−) deprenyl treatment.Mt. Sinai J. Med. 55, 67–74.

    PubMed  CAS  Google Scholar 

  • Kosofsky B. E., Genova L. M., and Hyman S. E. (1994) Postnatal age defines specificity of immediate early gene induction by cocaine in developing rat brain.J. Comp. Neurol. 351, 27–40.

    Article  Google Scholar 

  • Li X.-M., Juorio A. V., Paterson I. A., Zhu M.-Y., and Boulton A. A. (1992) Specific irreversible MAO B inhibitors stimulate gene expression of aromaticl-amino acid decarboxylase in PC12 cells.J. Neurochem. 59, 2324–2327.

    Article  PubMed  CAS  Google Scholar 

  • Li X.-M., Jourio A. V., and Boulton A. A. (1993a) NSD-1015 alters the gene expression aromaticl-amino acid decarboxylase in PC12 pheochromocytoma cells.Neurochem. Res. 18, 915–919.

    Article  PubMed  CAS  Google Scholar 

  • Li X.-M., Juorio A. V., Paterson I. A., Walz W., Zhu M.-Y., and Boulton A. A. (1993b) Gene expression of aromaticl-amino acid decarboxylase in cultured rat glial cells.J. Neurochem. 59, 1172–1175.

    Article  Google Scholar 

  • Li X.-M., Juorio A. V., and Boulton A. A. (1995) Some new mechanisms underlying the actions of (−)-deprenyl: possible relevance to neurodegeneration.Prog. Brain Res. 106, 99–112.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd K. G. and Hornykiewicz O. (1970) Parkinson’s disease, activity ofl-dopa decarboxylase in discrete brain regions.Science 170, 1212, 1213.

    Article  PubMed  CAS  Google Scholar 

  • Marsden C. D. (1990) Parkinson’s disease.Lancet 335, 948–952.

    Article  PubMed  CAS  Google Scholar 

  • Paterson I. A., Juorio A. V., and Boulton A. A. (1990) 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system?J. Neurochem. 55, 1827–1837.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1982)Rat Brain in Stereotaxic Coordinates. Academic, New York.

    Google Scholar 

  • Robins E., Robins J. M., Croninger A. B., Moses S. G., Spencer J., and Hudgens R. W. (1967) The low level of 5-HTP decarboxylase in human brain.Biochem. Med. 1, 240–251.

    Article  CAS  Google Scholar 

  • Salo P. T. and Tatton W. G. (1992) Deprenyl reduces the death of motoneurons caused by axotomy.J. Neurosci. Res. 31, 394–400.

    Article  PubMed  CAS  Google Scholar 

  • Tatton W. G. and Chalmers-Redman R. M. E. (1997) Apoptosis in neurogenerative disorders: potential therapy by modifying gene transcription.J. Neural Transm. 49, Suppl, 245–268.

    CAS  Google Scholar 

  • The Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease.N. Engl. J. Med. 328, 176–183.

    Article  Google Scholar 

  • Youdim B. M. H., Heldman E., Pollard H. B., Fleming P., and McHugh E. (1986) Contrasting monoamine oxidase activity and tyramine induced catecholamine release in PC 12 and chromaffin cells.Neuroscience 19, 1311–1318.

    Article  PubMed  CAS  Google Scholar 

  • Yu P. H., Davis B. A., Durden D. A., Terleckyj I., Nicklas W. G., and Boulton A. A. (1994) Neurochemical and neuroprotective effects of some aliphatic propargylamines: new selective non-amphetamine-like MAO-B inhibitors.J. Neurochem. 62, 697–704.

    Article  PubMed  CAS  Google Scholar 

  • Zsilla G., Földi P., Held G., Székely A. M., and Knoll J. (1986) The effect of repeated doses of repeated doses of (−) deprenyl on the dynamics of monoaminergic transmission. Comparison with clorgyline.Pol. J. Pharmacol. Pharm. 38, 57–67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XM., Juorio, A.V., Qi, J. et al. l-Deprenyl induces aromaticl-amino acid decarboxylase (AADC) mRNA in the rat substantia nigra and ventral tegmentum. Molecular and Chemical Neuropathology 35, 149–155 (1998). https://doi.org/10.1007/BF02815121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815121

Index Entries

Navigation