Skip to main content
Log in

On the Role of DT-Diaphorase Inhibition in Aminochrome-Induced Neurotoxicity In Vivo

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Dopamine oxidation in the pathway leading to neuromelanin formation generates the ortho-quinone aminochrome, which is potentially neurotoxic but normally rapidly converted by DT-diaphorase to nontoxic leukoaminochrome. However, when administered exogenously into rat striatum, aminochrome is able to produce damage to dopaminergic neurons. Because of a recent report that substantia nigra pars compacta (SNpc) tyrosine hydroxylase (T-OH) levels were unaltered by aminochrome when there was cell shrinkage of dopaminergic neurons along with a reduction in striatal dopamine release, the following study was conducted to more accurately determine the role of DT-diaphorase in aminochrome neurotoxicity. In this study, a low dose of aminochrome (0.8 nmol) with or without the DT-diaphorase inhibitor dicoumarol (0.2 nmol) was injected into the left striatum of rats. Intrastriatal 6-hydroxydopamine (6-OHDA, 32 nmol) was used as a positive neurotoxin control in other rats. Two weeks later, there was significant loss in numbers of T-OH immunoreactive fibers in SNpc, also a loss in cell density in SNpc, and prominent apomorphine (0.5 mg/kg sc)-induced contralateral rotations in rats that had been treated with aminochrome, with aminochrome/dicoumarol, or with 6-OHDA. Findings demonstrate that neurotoxic aminochrome is able to exert neurotoxicity only when DT-diaphorase is suppressed—implying that DT-diaphorase is vital in normally suppressing toxicity of in vivo aminochrome, generated in the pathway towards neuromelanin formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Núñez MT (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25:795–803

    Article  CAS  PubMed  Google Scholar 

  • Arriagada C, Paris I, Sanchez de las Matas MJ, Martinez-Alvarado P, Cardenas S, Castañeda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16:468–477

    Article  CAS  PubMed  Google Scholar 

  • Athauda D, Foltynie T (2015) The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 11:25–40

    Article  CAS  PubMed  Google Scholar 

  • Faunes M, Fernandez S, Gutierrez-Ibanez C, Iwaniuk AN, Wylie DR, Mpodozis J, Karten HJ, Marin G (2013) Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: a retrograde tracer and comparative study. J Comp Neurol 521:1727–1742

    Article  CAS  PubMed  Google Scholar 

  • Faunes M, Oñate-Ponce A, Fernández-Collemann S, Henny P (2015) Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: a stereological study. J Comp Neuro l524:738–758

    Google Scholar 

  • Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line—an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20:776–783

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Ibánez C, Iwaniuk AN, Lisney TJ, Faunes M, Marin GJ, Wylie DR (2012) Functional implications of species differences in the size and morphology of the isthmo optic nucleus (ION) in birds. PLoS One 7:e37816

    Article  PubMed  PubMed Central  Google Scholar 

  • Henny P, Brown MT, Northrop A, Faunes M, Ungless MA, Magill PJ, Bolam JP (2012) Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat Neurosci 15:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera A, Muñoz P, Paris I, Díaz-Veliz G, Mora S, Inzunza J, Hultenby K, Cardenas C, Jaña F, Raisman-Vozari R, Gysling K, Abarca J, Steinbusch HW, Segura-Aguilar J (2016) Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease. Cell Mol Life Sci 73:3583–3597

    Article  CAS  PubMed  Google Scholar 

  • Herrera A, Muñoz P, Steinbusch HW, Segura-Aguilar J. (2017) Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? ACS Chem Neurosci. 2017 Mar 3. doi:10.1021/acschemneuro.7b00034

  • Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B, Paris I, Segura-Aguilar J (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huenchuguala S, Muñoz P, Graumann R, Paris I, Segura-Aguilar J (2016) DT-diaphorase protects astrocytes from aminochrome-induced toxicity. Neurotoxicology 55:10–12

    Article  CAS  PubMed  Google Scholar 

  • Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M (2015) Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 73:1365–1379

    Article  PubMed  Google Scholar 

  • Lozano J, Muñoz P, Nore BF, Ledoux S, Segura-Aguilar J (2010) Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chem Res Toxicol 23:1492–1496

    Article  CAS  PubMed  Google Scholar 

  • Muñoz P, Segura-Aguilar J (2016) Commentary: a humanized clinically calibrated quantitative systems pharmacology model for hypokinetic motor symptoms in Parkinson's disease. Front Pharmacol 27:179

    Google Scholar 

  • Muñoz P, Segura-Aguilar J. (2017) Why we cannot translate successful results to new therapies in Parkinson’s disease. Clin Pharmacol Transl Med. 1

  • Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012a) Dopamine oxidation and autophagy. Parkinsons Dis 920953

  • Muñoz P, Paris I, Sanders LH, Greenamyre JT, Segura-Aguilar J (2012b) Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochim Biophys Acta 1822:1125–1136

    Article  PubMed  Google Scholar 

  • Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145:37–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz P, Paris I, Segura-Aguilar J (2016) Commentary: evaluation of models of Parkinson's disease. Front Neurosci 19:10–161

    Google Scholar 

  • Olanow W, Bartus RT, Volpicelli-Daley LA, Kordower JH (2015) Trophic factors for Parkinson's disease: to live or let die. Mov Disord 30:1715–1724

    Article  PubMed  Google Scholar 

  • Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18:82–92

    Article  PubMed  Google Scholar 

  • Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park A, Stacy M (2015) Modifying drugs in Parkinson's disease. Drugs 75:2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego, CA

    Google Scholar 

  • Segura-Aguilar J (2016d) New preclinical model are required to discover neuroprotective compound in Parkinson's disease. Pharmacol Res pii S1043-6618(16):31198–31197

    Google Scholar 

  • Segura-Aguilar J, Kostrzewa RM (2015) Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 27:328–354

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Metodiewa D, Welch CJ. (1998) Metabolic activation of dopamine o-quinones to osemiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim Biophys Acta. 1381:1-6

  • Segura-Aguilar J, Lind C (1989) On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine: prevention of quinone-derived oxygen toxicity by DT-diaphorase and superoxide dismutase. Chem Biol Interact 72:309–324

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson's disease. J Neurochem 129:898–915

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Muñoz P, Paris I (2016a) Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson's disease. Curr Med Chem 23:346–359

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Paris I, Muñoz P (2016b) The need of a new and more physiological preclinical model for Parkinson's disease. Cell Mol Life Sci 73:1381–1382

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J (2016c) New preclinical model are required to discover neuroprotective compound in Parkinson's disease. Pharmacol Res pii S1043-6618(16):31198–31197

  • West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  • Williams A (1986) MPTP toxicity: clinical features. J Neural Transm Suppl 20:5–9

    CAS  PubMed  Google Scholar 

  • Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. MolPharmacol 70:1079–1086

    CAS  Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Ali Jahanshahi (Postdoctoral Fellow at Maastricht University), João Oliveira (PhD student at Maastricht University) and Denise Hermes, and Hellen Steinbusch for all the technical support and guidance.

This work was supported by FONDECYT no. 1100165 (JSA), University of Chile ENL014/14 (JSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Soto, A., Díaz-Veliz, G., Mora, S. et al. On the Role of DT-Diaphorase Inhibition in Aminochrome-Induced Neurotoxicity In Vivo. Neurotox Res 32, 134–140 (2017). https://doi.org/10.1007/s12640-017-9719-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9719-8

Keywords

Navigation