Skip to main content
Log in

Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration ofAgrobacterium tumefaciens

  • Protocols
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Lentil cotyledonary nodes are some of the most regenerative tissues in legumes. Attempts to transform them by vacuum filtration have been limitedly successful. This report describes a rapid and convenient transient expression protocol based on vacuum infiltration ofAgrobacterium cells into lentil cotyledonary nodes. Vacuum-infiltrated tissues had significantly (P<.05) higher transient GUS expression than did noninfiltrated tissues. Under optimal conditions (infiltration at 200 mmHg for 20 min), 95% of theAgrobacterium-infiltrated explants exhibited an average of 16 blue foci. We believe this to be the first report of this technique for transient gene expression in lentil cotyledonary nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP :

6-Benzylaminopurine

MES :

2-(N-morpholino) ethanesulfonic acid

References

  • Atkins CA and Smith PMC (1997) Genetic transformation and regeneration of grain legumes. In: Legocki A, Bothe H, and Pühler A (eds) Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture, pp 283–304, Springer Verlag, Berlin Heidelberg.

    Chapter  Google Scholar 

  • Bean SJ, Gooding PM, Mullineaux PM, and Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16: 513–519.

    Google Scholar 

  • Chowrira GM, Akella V, and Lurquin PF (1995) Electroporation mediated gene transfer into intact nodal meristems in planta: generating transgenic plants without in vitro tissue culture. Mol Biotechnol 3: 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Chowrira GM, Akella V, Fuerst PE, and Lurquin PF (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol Biotechnol 5: 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1997) Biotechnology applied to grain legumes. Field Crops Res 53: 83–97.

    Article  Google Scholar 

  • Collén AMC and Jarl CI (1999) Comparison of different methods for plant regeneration and transformation of the legumeGalega orientalis Lam. (goat’s rue). Plant Cell Rep 19: 13–19.

    Article  Google Scholar 

  • Jackson JA and Hobbs SLA (1990) Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell Dev Biol 26: 835–838.

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5: 387–405.

    Article  CAS  Google Scholar 

  • Kaneda Y, Tabei Y, Nishimura S, Harada K, Akihama T, and Kitamura K (1997) Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans [Glycine max (L.) Merr.]. Plant Cell Rep 17: 8–12.

    Article  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, and Angenon G (1997) AnAgrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122: 101–108.

    Article  CAS  Google Scholar 

  • Khalafalla MM and Hattori K (1999) A combination of thidiazuron and benzyladenine promotes multiple shoot production from cotyledonary node explants of faba bean (Vicia faba L.). Plant Growth Regul 27: 145–148.

    Article  CAS  Google Scholar 

  • Khawar K and Özcan S (2002) In vitro induction of crown galls byAgrobacterium tumefaciens super virulent strain A281 (pTiBo542) in lentil (Lens culinaris Medik). Tr J Bot 26: 165–170.

    Google Scholar 

  • Lurquin PF, Cai Z, Stiff CM, and Fuerst EP (1998) Half embryo cocultivation technique for estimating the susceptibility of pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars toAgrobacterium tumefaciens. Mol. Biotechnol 9: 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Dini L, Marizio LD, Giulio AD, Rossi A, Mossa G, and Frienzi-Agro A (1992) Interaction of DNA with cationic liposomes: ability of transfecting lentil protoplasts. Biochem Biophys Res Comm 186: 1417–1422.

    Article  PubMed  CAS  Google Scholar 

  • McBride KE and Summerfelt KR (1990) Improved binary vectors forAgrobacterium-mediated plant transformation. Plant Mol Biol 14: 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Meurer CA, Dinkins RD, and Collins, GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18: 180–186.

    Article  CAS  Google Scholar 

  • Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Nadolska-Orczyk A and Orczyk W (2000) Sutudy of the factors influencingAgrobacterium-mediated transformation of pea (Pisum sativum L.). Mol Breed 6: 185–194.

    Article  CAS  Google Scholar 

  • Öktem HA, Mahmoudian M, Eyidogan F, and Yücel M (1999) GUS gene delivery and expression in lentil cotyledonary nodes using particle bombardment. LENS Newsletter 26: 3–6.

    Google Scholar 

  • Qing MC, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, and Robagila C (2000) Transfromation of Pakcholi (Brassica rapa L. ssp.chinensis) byAgrobacterium infiltration. Mol Breed 6: 67–72.

    Article  CAS  Google Scholar 

  • Trick HN and Finer JJ (1997) SAAT: sonication assistedAgrobacterium-mediated transformation. Transgen Res 6: 329–336.

    Article  CAS  Google Scholar 

  • Trieu AT, Burleig SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D, and Harrison MJ (2000) Transformation ofMedicago truncatula via infiltration of seedlings or flowering plants withAgrobacterium. Plant J 22: 531–541.

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Conor-Sanchez A, Willmitzer L, and Rocha-Sosa M (1990) Construction of an intron containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events inAgrobacterium mediated plant transformation. Mol Gen Genet 220: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Warkentin TD and McHugen A (1991) Crown gall transformation of lentil (Lens culinaris Medik) with virulent strains ofAgrobacterium tumefaciens. Plant Cell Rep 10: 489–493.

    Article  Google Scholar 

  • Warkentin TD and McHugen A (1992)Agrobacterium tumefaciens-mediated betaglucuronidase (GUS) gene expression in lentil (Lens culinaris Medik) tissues. Plant Cell Rep 11: 274–278.

    Article  CAS  Google Scholar 

  • Warkentin TD and McHugen A (1993) Regeneration from lentil cotyledonary nodes and potential of this explant for transformation byAgrobacterium tumefaciens. LENS Newsletter 20: 26–28.

    Google Scholar 

  • Yang Y, Li R, and Qi M (2000)In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22: 543–551.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Avni Öktem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoudian, M., Yücel, M. & Öktem, H.A. Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration ofAgrobacterium tumefaciens . Plant Mol Biol Rep 20, 251–257 (2002). https://doi.org/10.1007/BF02782460

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782460

Key words

Navigation