Skip to main content
Log in

Complete resolution of the ionization equilibria of 5-deoxypyridoxal in water-dioxane mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We have used a potentiometric method to determine the thermodynamic equilibrium constants for the macroscopic ionization processes of 5-deoxypyridoxal (DPL) in water-dioxane mixtures (0-70% weight fraction in dioxane) at temperatures ranging from 10°C to 50°C. These data, together with previously published equilibrium constants for the tautomerism and hydration processes, have allowed us to resolve the complete microconstant system. We have also calculated the microscopic ionization equilibrium constants under all the experimental conditions. The changes of standard thermodynamic function for the macroscopic and microscopic ionization processes were obtained in various water-dioxane mixtures at 25°C. The values of a given microscopic pK with different solvents and temperatures fit very well to an equation which relates this magnitude with the thermodynamic parameters, the solvation of the components of the reaction, and a solvent parameter. We have obtained an interesting linear correlation between the thermodynamic parameters corresponding to all the microscopic ionizations of DPL and the net change of the solvation during the process: enthalpies correlate linearly for all the microscopic ionizations, while entropies do so for the phenols and pyridinium ions separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Christen and D. E. Metzler,Transaminases, (Wiley, New York, 1985).

    Google Scholar 

  2. E. E. Snell, inVitamin B 6 Pyridoxal Phosphate: Chemical, Biochemical and Medical Aspects, Part A, D. Dolphin, R. Poulson and O. Abramovic, eds, (Wiley, New York, 1986).

    Google Scholar 

  3. M. Cortijo, J. Llor, and J. M. Sánchez-Ruiz,J. Biol. Chem. 263, 17960 (1988).

    Google Scholar 

  4. A. E. Martell and R. J. Motekaitis,The Determination and Use of Stability Constants, Chap. 7, (VCH, New York, 1988).

    Google Scholar 

  5. J. Polster and H. Lachmann,Spectrometric Titrations, Chap. 12, (VCH, New York, 1989).

    Google Scholar 

  6. J. Llor, O. Lopez-Mayorga, and L. Muñoz,Magn. Reson. Chem. 31, 552 (1993).

    Article  CAS  Google Scholar 

  7. J. Llor and S. B. Asensio,J. Solution Chem. 25, 667 (1996).

    Article  CAS  Google Scholar 

  8. C. Iwata,Biochem. Prep. 12, 117 (1968).

    CAS  Google Scholar 

  9. J. M. Sanchez-Ruiz, J. Llor, and M. Cortijo,J. Chem. Soc. Perkin Trans. II 2047 (1984).

    Google Scholar 

  10. E. A. Peterson and H. A. Sober,J. Am. Chem. Soc. 76, 169 (1954).

    Article  CAS  Google Scholar 

  11. L. G. van Uitert and C. E. Haas,J. Am. Chem. Soc. 75, 451 (1953).

    Article  Google Scholar 

  12. L. G. van Uitert and W. C. Femelius,J. Am. Chem. Soc. 76, 5887 (1954).

    Article  Google Scholar 

  13. J. Llor, M. Sánchez-Nevado, S. Asensio, and M. Cortijo,An. Quim. 83, 317 (1987).

    CAS  Google Scholar 

  14. E. M. Woolley, D. G. Hurkot, and L. H. Hepler,J. Phys. Chem. 74, 3908 (1970).

    Article  Google Scholar 

  15. C. C. Panichajakul and E. M. Woolley,Anal. Chem. 47, 1870 (1975).

    Article  Google Scholar 

  16. C. C. Panichajakul and E. M. Woolley,Adv. Chem. Ser. 155, 263 (1976).

    Article  CAS  Google Scholar 

  17. J. Llor, J. M. Sanchez-Ruiz, and M. Cortijo,Acta Cient. Comp. 22, 231 (1985).

    CAS  Google Scholar 

  18. S. B. Asensio, E. Lopez-Cantarero, and J. Llor,Can. J. Chem. 70, 1635 (1992).

    Article  CAS  Google Scholar 

  19. C. M. Harris, R. J. Johnson, and D. E. Metzler,Biochim. Biophys. Acta 421, 181 (1976).

    CAS  Google Scholar 

  20. D. E. Metzler and E. E. Snell,J. Am. Chem. Soc. 77, 2431 (1955).

    Article  CAS  Google Scholar 

  21. D. D. Perrin, B. Dempsey, and E. P. Sarjeant. pKa Prediction for Organic Acid and Bases. Chapman and Hall, London (1981).

    Google Scholar 

  22. W. L. Marshall and A. S. Quist,Proc. Natl. Acad. Sci. U.S.A.,58, 901 (1967).

    Article  CAS  Google Scholar 

  23. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 1536 (1968)

    Article  CAS  Google Scholar 

  24. W. L. Marshall,J. Phys. Chem. 74, 346 (1970).

    Article  CAS  Google Scholar 

  25. E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).

    Article  CAS  Google Scholar 

  26. J. Datta and K. K. Kundu,Can J. Chem. 59, 3149 (1981).

    Article  CAS  Google Scholar 

  27. N. S. Isaacs.Physical Organic Chemistry. Longman Scientific & Technical, (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llor, J., Ros, M.P. & Asensio, S.B. Complete resolution of the ionization equilibria of 5-deoxypyridoxal in water-dioxane mixtures. J Solution Chem 26, 1021–1036 (1997). https://doi.org/10.1007/BF02768827

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02768827

Key words

Navigation