Skip to main content
Log in

Transgene inheritance in plants genetically engineered by microprojectile bombardment

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microprojectile bombardment to deliver DNA into plant cells represents a major breakthrough in the development of plant transformation technologies and accordingly has resulted in transformation of numerous species considered recalcitrant toAgrobacterium- or protoplast-mediated transformation methods. This article attempts to review the current understanding of the molecular and genetic behavior of transgenes introduced by microprojectile bombardment. The characteristic features of the transgene integration pattern resulting from DNA delivery via microprojectile bombardment include integration of the full length transgene as well as rearranged copies of the introduced DNA. Copy number of both the transgene and rearranged fragments is often highly variable. Most frequently the multiple transgene copies and rearranged fragments are inherited as a single locus. However, a variable proportion of transgenic events produced by microprojectile bombardment exhibit Mendelian ratios for monogenic and digenic segregation vs events exhibiting segregation distortion. The potential mechanisms underlying these observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells.Nature 327, 70–73.

    Article  CAS  Google Scholar 

  2. Sanford, J. C. (1988) The biolistic process.Trends Biotechnol. 6, 299–302.

    Article  CAS  Google Scholar 

  3. Sanford, J. C. (1990) Biolistic plant transformation.Physiol. Plant. 79, 206–209.

    Article  CAS  Google Scholar 

  4. Sanford, J. C., DeVit, M. J., Russell, J. A., Smith, F. D., Harpending, P. R., Roy, M. K., and Johnston, S. A. (1991) An improved, helium-driven biolistic device.Techniques 3, 3–16.

    CAS  Google Scholar 

  5. Sanford, J. C., Klein, T. M., Wolf, E. D., and Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process.Particle Sci. Technol. 5, 27–37.

    Article  CAS  Google Scholar 

  6. Sanford, J. C., Smith, F. D., and Russell, J. A. (1993) Optimizing the biolistic process for different biological applications.Methods Enzymol. 217, 483–509.

    PubMed  CAS  Google Scholar 

  7. Hunold, R., Bronner, R., and Hahne, G. (1994) Early events in microprojectile bombardment: cell viability and particle location.Plant J. 5, 593–604.

    Article  CAS  Google Scholar 

  8. Christou, P. (1992) Genetic transformation of crop plants using microprojectile bombardment.Plant J. 2, 275–281.

    Article  CAS  Google Scholar 

  9. Songstad, D. D., Somers, D. A., and Griesbach, R. J. (1995) Advances in alternative DNA delivery techniques.Plant Cell, Tissue Organ Cult. 40, 1–15.

    Article  CAS  Google Scholar 

  10. Johnston, S. A., Anziano, P. Q., Shark, K., Sanford, J. C., and Butow, R. A. (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles.Science 240, 1538–1541.

    Article  PubMed  CAS  Google Scholar 

  11. Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B., and Sanford, J. C. (1988) Chloroplast transformation inChlamydomonas with high velocity microprojectiles.Science 240, 1534–1537.

    Article  PubMed  CAS  Google Scholar 

  12. Svab, Z. and Maliga, P. (1993) High-frequency plastid transformation in tobacco by selection for a chimericaadA gene.Proc. Natl. Acad. Sci. USA 90, 913–917.

    Article  PubMed  CAS  Google Scholar 

  13. Klein, T. M., Kornstein, L., Sanford, J. C., and Fromm, M. E. (1989) Genetic transformation of maize cells by particle bombardment.Plant Physiol. 91, 440–444.

    PubMed  CAS  Google Scholar 

  14. Spencer, T. M., Gordon-Kamm, W. J., Daines, R.J., Start, W. G., and Lemaux, P. G. (1990) Bialaphos selection of stable transformants from maize cell culture.Theor. Appl. Genet. 79, 625–631.

    Article  CAS  Google Scholar 

  15. Somers, D. A., Rines, H. W., Gu, W., Kaeppler, H. F., and Bushnell, W. R. (1992) Fertile, transgenic oat plants.Bio/Technology 10, 1589–1594.

    Article  CAS  Google Scholar 

  16. Weeks, J. T., Anderson, O. D., and Blechl, A. E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum).Plant Physiol. 102, 1077–1084.

    PubMed  CAS  Google Scholar 

  17. Wan, Y. and Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants.Plant Physiol. 104, 37–48.

    PubMed  CAS  Google Scholar 

  18. Register, J. C. III, Peterson, D. J., Bell, P. J., Bullock, W. P., Evans, I. J., Frame, B., Greenland, A. J., Higgs, N. S., Jepson, I., Jiao, S., Lewnau, C. J., Sillick, J. M., and Wilson, H. M. (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment.Plant Mol. Biol. 25, 951–961.

    Article  PubMed  CAS  Google Scholar 

  19. Walters, D. A., Vetsch, C. S., Potts, D. E., and Lundquist, R. C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants.Plant Mol. Biol. 18, 189–200.

    Article  PubMed  CAS  Google Scholar 

  20. Cooley, J., Ford, T., and Christou, P. (1995) Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration.Theor. Appl. Genet. 90, 97–104.

    Article  CAS  Google Scholar 

  21. Christou, P., Ford, T. L., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into mature zygotic embryos.Bio/Technology 9, 957–962.

    Article  Google Scholar 

  22. McCabe, D. E., Swain, W. F., Martinell, B. J., and Christou, P. (1988) Stable transformation of soybean (Glycine max) by particle acceleration.Bio/Technology 6, 923–926.

    Article  Google Scholar 

  23. Russell, D. R., Wallace, K. M., Bathe, J. H., Martinell, B. J., and McCabe, D. E. (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration.Plant Cell Rep. 12, 165–169.

    Article  CAS  Google Scholar 

  24. Brar, G. S., Cohen, B. A., Vick, C. L., and Johnson, G. W. (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology.Plant J. 5, 745–753.

    Article  Google Scholar 

  25. Christou, P., Swain, W. F., Yang, N.-S., and McCabe, D. E. (1989) Inheritance and expression of foreign genes in transgenic soybean plants.Proc. Natl. Acad. Sci. USA 86, 7500–7504.

    Article  PubMed  CAS  Google Scholar 

  26. Spencer, T. M., O'Brien, J. V., Start, W. G., Adams, T. R., Gordon-Kamm, W. J., and Lemaux, P. G. (1992) Segregation of transgenes in maize.Plant Mol. Biol. 18, 201–210.

    Article  PubMed  CAS  Google Scholar 

  27. Ritala, A., Aspegren, K., Kurten, U., Salmenkallio-Marttila, M., Mannonen, L., Hannus, R., Kauppinen, V., Teeri, T. H., and Enari, T.-M. (1994) Fertile transgenic barley by particle bombardment of immature embryos.Plant Mol. Biol. 24, 317–325.

    Article  PubMed  CAS  Google Scholar 

  28. Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Baga, M., and Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs.Plant J. 5, 285–297.

    Article  CAS  Google Scholar 

  29. Paszkowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., and Potrykus, I. (1984) Direct gene transfer to plants.EMBO J. 3, 2717–2722.

    PubMed  CAS  Google Scholar 

  30. Potrykus, I., Paszkowski, J., Saul, M. W., Petruska, J., and Shillito, R. D. (1985) Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer.Mol. Gen. Genet. 199, 169–177.

    Article  PubMed  CAS  Google Scholar 

  31. Potrykus, I., Paszkowski, J., Saul, M. W., Negrutiu, I., and Shillito, R. D. (1987) Direct gene transfer to plants: facts and future, inPlant Tissue and Cell Culture (Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds.), Alan R. Liss, New York, pp. 289–302.

    Google Scholar 

  32. Saul, M. W. and Potrykus, I. (1990) Direct gene transfer to protoplasts: fate of the transferred genes.Dev. Genet. 11, 176–181.

    Article  CAS  Google Scholar 

  33. Morota, H. and Uchimiya, H. (1988) Inheritance and structure of foreign DNA in progenies of transgenic tobacco obtained by direct gene transfer.Theor. Appl. Genet. 76, 161–164.

    Article  CAS  Google Scholar 

  34. Jongsma, M., Koornneef, M., Zabel, P., and Hille, J. (1987) Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences.Plant Mol. Biol. 8, 383–394.

    Article  CAS  Google Scholar 

  35. Peng, J., Kononowicz, H., and Hodges, T. K. (1992) Transgenic indica rice plants.Theor. Appl. Genet. 83, 855–863.

    Article  CAS  Google Scholar 

  36. Mouras, A., Saul, M. W., Essad, S., and Potrykus, I. (1987) Localization byin situ hybridization of a low copy chimaeric resistance gene introduced into plants by direct gene transfer.Mol. Gen. Genet. 207, 204–209.

    Article  CAS  Google Scholar 

  37. Czernilofsky, A. P., Hain, R., Baker, B., and Wirtz, U. (1986) Studies of structure and functional organization of foreign DNA integrated into the genome ofNicotiana tabacum.DNA 5, 473–482.

    PubMed  CAS  Google Scholar 

  38. Gharti-Chhetri, G. B., Cherdshewasart, W., Dewulf, J., Paszkowski, J., Jacobs, M., and Negrutiu, I. (1990) Hybrid genes in the analysis of transformation conditions. 3. Temporal/spatial fate of NPTII gene integration, its inheritance and factors affecting these processes inNicotiana plumbaginifolia.Plant Mol. Biol. 14, 687–696.

    Article  PubMed  CAS  Google Scholar 

  39. Kartzke, S., Saedler, H., and Meyer, P. (1990) Molecular analysis of transgenic plants derived from transformations of protoplasts at various stages of the cell cycle.Plant Sci. 67, 63–72.

    Article  CAS  Google Scholar 

  40. Schmidt-Rogge, T., Meixner, M., Srivastava, V., Guha-Mukherjee, S., and Schieder, O. (1993) Transformation of haploidDatura innoxia protoplasts and analysis of the plasmid integration pattern in regenerated transgenic plants.Plant Cell Rep. 12, 390–394.

    Article  CAS  Google Scholar 

  41. Hain, R., Stabel, P., Czernilofsky, A. P., Steinbiß, H. H., Herrera-Estrella, L., and Schell, J. (1985) Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts.Mol. Gen. Genet. 199, 161–168.

    Article  CAS  Google Scholar 

  42. Czernilofsky, A. P., Hain, R., Herrera-Estrella, L., Lorz, H., Goyvaerts, E., Baker, B. J., and Schell, J. (1986) Fate of selectable marker DNA integrated into the genome ofNicotiana tabacum.DNA 5, 101–113.

    Article  PubMed  CAS  Google Scholar 

  43. Tomes, D. T., Weissinger, A. L., Ross, M., Higgins, R., Drummond, B.J., Schaaf, S., Malone-Schoeneberg, J., Staebell, M., Flynn, P., Anderson, J., and Howard, J. (1990) Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves.Plant Mol. Biol. 14, 261–268.

    Article  PubMed  CAS  Google Scholar 

  44. Fromm, M. J., Morrish, F., Armstrong, C., Williams, R., Thomas, J., and Klein, T. M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants.Bio/Technology 8, 833–839.

    Article  PubMed  CAS  Google Scholar 

  45. Gordon-Kamm, W. J., Spencer, T. M., Mangano, M. L., Adams, T. R., Daines, R. J., Start, W. G., O'Brien, J. V., Chambers, S. A., Adams, W. R. Jr., Willetts, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W., Kausch, A. P., and Lemaux, P. G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants.Plant Cell 2, 603–618.

    Article  PubMed  CAS  Google Scholar 

  46. Vasil, V., Castillo, A. M., Fromm, M. E., and Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus.Bio/Technology 10, 667–674.

    Article  CAS  Google Scholar 

  47. Vasil, V., Srivastava, V., Castillo, A. M., Fromm, M. E., and Vasil, I. K. (1993) Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos.Bio/Technology 11, 1553–1558.

    Google Scholar 

  48. Becker, D., Brettschneider, R., and Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue.Plant J. 5, 299–307.

    Article  PubMed  CAS  Google Scholar 

  49. Barcelo, P., Hagel, C., Becker, D., Martin, A., and Lorz, H. (1994) Transgenic cereal (tritordeum) plants obtained at high frequency by microprojectile bombardment of inflorescence tissue.Plant J. 5, 583–592.

    Article  PubMed  CAS  Google Scholar 

  50. Finer, J. J. and McMullen, M. D. (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment.Plant Cell Rep. 8, 586–589.

    Article  Google Scholar 

  51. Riggs, C. D. and Bates, G. W. (1986) Stable transformation of tobacco by electroporation: evidence for plasmid concatenation.Proc. Natl. Acad. Sci. USA 43, 5602–5606.

    Article  Google Scholar 

  52. Herve, C., Rouan, D., Guerche, P., Montane, M.-H., and Yot, P. (1993) Molecular analysis of trnasgenic rapeseed plants obtained by direct transfer of two separate plasmids containing, respectively, the cauliflower mosaic virus coat protein gene and a selectable marker gene.Plant Sci. 91, 181–193.

    Article  CAS  Google Scholar 

  53. Tagu, D., Bergounioux, C., Cretin, C., Perennes, C., and Gadal, P. (1988) Direct gene transfer inPetunia hybrida electroporated protoplasts: evidence for co-transformation with a phosphoenolpyruvate carboxylase cDNA from sorghum leaf.Protoplasma 146, 101–105.

    Article  Google Scholar 

  54. Tagu, D., Bergounioux, C., Perennes, C., and Gadal, P. (1990) Inheritance of two foreign genes co-introduced intoPetunia hybrida by direct gene transfer.Plant Cell. Tissue Organ Cult. 21, 259–266.

    Article  CAS  Google Scholar 

  55. Christou, P. and Swain, W. F. (1990) Cotransformation frequencies of foreign genes in soybean cell cultures.Theor. Appl. Genet. 79, 337–341.

    Article  CAS  Google Scholar 

  56. Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J., and Potrykus, I. (1986) Co-transformation of unlinked foreign genes into plants by direct gene transfer.Bio/Technology 4, 1093–1096.

    Article  CAS  Google Scholar 

  57. Zambryski, P., Tempe, J., and Schell, J. (1989) Transfer and function of T-DNA genes fromAgrobacterium Ti and Ri plasmids in plants.Cell 56, 193–201.

    Article  PubMed  CAS  Google Scholar 

  58. Hooykaas, P. J. J. and Beijersbergen, A. G. M. (1994) The virulence system ofAgrobacterium tumefaciens.Annu. Rev. Phytopathol. 32, 157–179.

    CAS  Google Scholar 

  59. Heberle-Bors, E., Charvat, B., Thompson, D., Schernthaner, J. P., Barta, A., Matzke, A. J. M., and Matzke, M. A. (1988) Genetic analysis of T-DNA insertions into the tobacco genome.Plant Cell Rep. 7, 571–574.

    Article  CAS  Google Scholar 

  60. Burdon, T. G. and Wall, R. J. (1992) Fate of microinjected genes in preimplantation mouse embryos.Mol. Reprod. Dev. 33, 436–442.

    Article  PubMed  CAS  Google Scholar 

  61. Bates, G. W., Carle, S. A., and Piastuch, W. C. (1990) Linear DNA introduced into carrot protoplasts by electroporation undergoes ligation and recircularization.Plant Mol. Biol. 14, 899–908.

    Article  PubMed  CAS  Google Scholar 

  62. Folger, K. R., Wong, E. A., Wahl, G., and Capecchi, M. R. (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules.Mol. Cell. Biol. 2, 1372–1387.

    PubMed  CAS  Google Scholar 

  63. Rohan, R. M., King, D., and Frels, W. I. (1990) Direct sequencing of PCR-amplified junction fragments from tandemly repeated transgenes.Nucleic Acids Res. 18, 6089–6095.

    Article  PubMed  CAS  Google Scholar 

  64. Kohler, F., Cardon, G., Pohlman, M., and Schieder, O. (1989) Enhancement of transformation rates in higher plants by low-dose irradiation: are DNA repair systems involved in the incorporation of exogenous DNA into plant genome?Plant Mol. Biol. 12, 189–199.

    Article  Google Scholar 

  65. Mills, A. D., Blow, J. J., White, J. G., Amos, W. B., Wilcock, D., and Laskey, R. A. (1989). Replication occurs at discrete loci spaced throughout nuclei replicatingin vitro.J. Cell Sci. 94, 471–477.

    PubMed  Google Scholar 

  66. Deroles, S. C. and Gardner, R. C. (1988) Analysis of the T-DNA structure in a large number of transgenic petunias generated byAgrobacterium-mediated transformation.Plant Mol. Biol. 11, 365–377.

    Article  CAS  Google Scholar 

  67. Koncz, Z., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G. P., and Schell, J. (1989) High-frequency T-DNA-mediated gene tagging in plants.Proc. Natl. Acad. Sci. USA 86, 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  68. Gheysen, G., Villarroel, R., and Van Montagu, M. (1991) Illegitimate recombination in plants: a model for T-DNA integration.Genes Dev. 5, 287–297.

    Article  PubMed  CAS  Google Scholar 

  69. Matsumoto, S., Ito, Y., Hosoi, T., Takahashi, Y., and Machida, Y. (1990) Integration ofAgrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA.Mol. Gen. Genet. 224, 309–316.

    Article  PubMed  CAS  Google Scholar 

  70. Hamada, T., Sasaki, H., Seki, R., and Sakaki, Y. (1993) Mechanism of chromosomal integration of transgenes in microinjected mouse eggs: sequence analysis of genome-transgene and transgene-transgene junctions at two loci.Gene 128, 197–202.

    Article  PubMed  CAS  Google Scholar 

  71. Lee, K. Y., Lund, P., Lowe, K., and Dunsmuir, P. (1990) Homologous recombination in plant cells afterAgrobacterium-mediated transformation.Plant Cell 2, 415–425.

    Article  PubMed  CAS  Google Scholar 

  72. Ohba, T., Yoshioka, Y., Machida, C., and Machida, Y. (1995) DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications around the integration target.Plant J. 7, 157–164.

    Article  PubMed  CAS  Google Scholar 

  73. Finnegan, J. and McElroy, D. (1994) Transgene inactivation: plants fight back!Bio/Technology 12, 883–888.

    Article  Google Scholar 

  74. Flavell, R. B. (1994) Inactivation of gene expression plants as a consequence of specific sequence duplication.Proc. Natl. Acad. Sci. USA 91, 3490–3496.

    Article  PubMed  CAS  Google Scholar 

  75. Matzke, M. A. and Matzke, A. J. M. (1995) How and why do plants inactivate homologous (trans) gene?Plant Physiol. 107, 679–685.

    PubMed  CAS  Google Scholar 

  76. Linn, F., Heidmann, I., Saedler, H., and Meyer, P. (1990) Epigenetic changes in the expression of the maize A1 gene inPetunia hybrida: role of numbers of integrated gene copies and methylation.Mol. Gen. Genet. 222, 329–336.

    Article  PubMed  CAS  Google Scholar 

  77. Armstrong, C. L., Parker, G. B., Pershing, J. C., Brown, S. M., Sanders, P. R., Duncan, D. R., Stone, T., Dean, D. A., DeBoer, O. L., Hart, J., Howe, A. R., Morrish, F. M., Pajeau, M. E., Petersen, W. L., Reich, B. J., Rodriguez, R., Santino, C. G., Sato, S. J., Schuler, W., Sims, S. R., Stehling, S., Tarochione, L. J., and Fromm, M. E. (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein fromBacillus thuringiensis.Crop Sci. 35, 550–557.

    Article  Google Scholar 

  78. Somers, D. A., Torbert, K. A., Pawlowski, W. P., and Rines, H. W. (1994) Genetic engineering of oat, inImprovement of Cereal Quality by Genetic Engineering (Henry, R. J. and Ronalds, J. A., eds.) Plenum, New York, pp. 37–46.

    Google Scholar 

  79. Toki, S., Takamatsu, S., Nojiri, C., Ooba, S., Anzai, H., Iwata, M., Christensen, A. H., Quail, P. H., and Uchimiya, H. (1992) Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants.Plant Physiol. 100, 1503–1507.

    PubMed  CAS  Google Scholar 

  80. Battraw, M. and Hall, T. C. (1992) Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants.Plant Sci. 86, 191–202.

    Article  CAS  Google Scholar 

  81. Uchimiya, H., Hirochika, H., Hashimoto, H., Hara, A., Masuda, T., Kasumimoto, T., Harada, H., Ikeda, J.-E., and Yoshioka, M. (1986) Co-expression and inheritance of foreign genes in transformants obtained by direct DNA transformation of tobacco protoplasts.Mol. Gen. Genet. 205, 1–8.

    Article  CAS  Google Scholar 

  82. Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H. (1989) Fertile transgenic rice plants regenerated from tranformed protoplasts.Nature 338, 274–276.

    Article  CAS  Google Scholar 

  83. Phillips, R. L., Somers, D. A., and Hibberd, K. A. (1988) Cell tissue culture andin vitro manipulation, inCorn and Corn Improvement (Sprague, G. F. and Dudley, J. W., eds.), American Society of Agronomy, Madison, WI, pp. 345–387.

    Google Scholar 

  84. Christou, P. and McCabe, D. E. (1992) Prediction of germline transformation events in chimeric R0 transgene soybean plantlets using tissue-specific expression patterns.Plant J. 2, 283–290.

    Article  CAS  Google Scholar 

  85. Tovar, J. and Lichtenstein, C. (1992) Somatic and meiotic chromosomal recombination between inverted duplications in transgenic tobacco plants.Plant Cell 4, 319–332.

    Article  PubMed  CAS  Google Scholar 

  86. Phillips, R. L., Kaeppler, S. M., and Olhoft, P. (1994) Genetic instability of plant tissue cultures: breakdown of normal controls.Proc. Natl. Acad. Sci. USA 91, 5222–5226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Somers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlowski, W.P., Somers, D.A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6, 17–30 (1996). https://doi.org/10.1007/BF02762320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02762320

Index Entries

Navigation