Skip to main content
Log in

In search of synaptosomal Na+, K+-ATPase regulators

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory, that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories.

Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and use of the fraction.

The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II.

In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagawa K., Hara N., and Tsukada Y. (1984) Partial purification and properties of the inhibitors of Na+,K+-ATPase and ouabain-binding in bovine central nervous system.J. Neurochem. 42, 775–780.

    Article  PubMed  CAS  Google Scholar 

  • Alaghband Zadeh J., Fenton S., Hancock K. Millet J., and de Wardener H. E. (1983) Evidence that the hypothalamus may be a source of a circulating Na+,K+-ATPase inhibitor.J. Endocr. 98, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Albers R. W., Rodríguez de Lores Arnaiz G., and De Robertis E. (1965) Sodium-potassium-activated ATPase and potassium-activatedp-nitrophenyl-phosphatase: a comparison of their subcellular localizations in rat brain.Proc. Natl. Acad. Sci. USA 53, 557–564.

    Article  PubMed  CAS  Google Scholar 

  • Albers R. W., Siegel G. J., and Stahl W. L. (1989) Membrane transport,Basic Neurochemistry, Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B., eds., Raven, New York, pp. 49–70.

    Google Scholar 

  • Antonelli M., Casillas T., and Rodríguez de Lores Arnaiz G. (1991) Effect of Na+,K+-ATPase modifiers on high-affinity ouabain binding determined by quantitative autoradiography.J. Neurosci. Res. 27, 324–331.

    Article  Google Scholar 

  • Antonelli de Gómez de Lima M. and Rodríguez de Lores arnaiz G. (1981) Tissue-specificity of dopamine effects on brain ATPases.Neurochem. Res. 6, 969–977.

    Article  PubMed  Google Scholar 

  • Antonelli de Gómez de Lima M. and Rodríguez de Lores Arnaiz G. (1986) The brain soluble factor which possibilitates the stimulation of neuronal ATPase by dopamine is partially sensitive to trypsin digestion.Com. Biol. 4, 421–428.

    Google Scholar 

  • Antonelli de Gómez de Lima M. and Rodríguez de Lores Arnaiz G. (1988) The inhibitory activity of a brain extract on synaptosomal Na+,K+-ATPase is sensitive to carboxypeptidase A and to chelating agents.Neurochem. Res. 13, 237–241.

    Article  PubMed  Google Scholar 

  • Araki K., Kuroki J., Ito O., Kuwada M., and Tachibana S. (1989) Novel peptide inhibitor (SPAI) of Na+,K+-ATPase from porcine intestine.Biochem. Biophys. Res. Comm. 164, 496–502.

    Article  PubMed  CAS  Google Scholar 

  • Balzan S., Ghione S., Biver P., Gazzetti P., and Montali U. (1991) Partial purification of endogenous digitalis-like compound (s) in cord blood.Clin. Chem. 37, 277–281.

    PubMed  CAS  Google Scholar 

  • Battaini F. and Peterkofsky A. (1980) Histidyl-proline diketopiperazine, an endogenous brain peptide that inhibits (Na+,K+)-ATPase.Biochem. Biophys. Res. Comm. 94, 240–247.

    Article  PubMed  CAS  Google Scholar 

  • Bertorello A. M., Hopfield J. F., Aperia A., and Greengard P. (1990) Inhibition by dopamine of (Na+,K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism.Nature 347, 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Bojorge G. and Rodríguez de Lores Arnaiz G. (1987) Insulin modifies Na+,K+-ATPase activity of synaptosomal membranes and whole homogenates prepared from rat cerebral cortex.Neurochem. Int. 11, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Braquet P., Senn N., Robin J. P., Esanu A., Godfraind T., and Garay R. (1986) Inhibition of the erythrocyte Na+,K+-pump by mammalian lignans.Pharmacol. Res. Commun. 18, 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky J. L. (1991) Insulin, the isozymes, and the regulation of the CNS sodium pump. Trans.Am. Soc. Neurochem. 22(1), 349 (abstract).

    Google Scholar 

  • Clerico A., Balzan S., Del Chicca M. G., Paci A., Cocci F., and Bertelli A. (1988) Endogenous cardiac glycoside-like substances in newborns, adults, pregnant women and patients with hypertension or renal insufficiency.Drugs Exp. Clin. 14(9), 603–607.

    CAS  Google Scholar 

  • Clerico A., Ghione S., Del Chicca M. G., and Balzan S. (1987) Problems in standardization of digitalis-like substance assays by means of competitive immunological methods.Clin. Chem. 33, 340–343.

    PubMed  CAS  Google Scholar 

  • Crabos M., Grichois M. L., Guicheney P., Wainer I. W., and Cloix J. F. (1987) Further biochemical characterization of an Na+ pump inhibitor purified from human urine.Eur. J. Biochem. 162, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Das P. K., Chakrabarti R., Bandopadhyay S., and Ray T. K. (1989) Demonstration of an endogenous activator for the Na+,K+-ATPase system.Mol. Cell. Biochem. 91, 123–129.

    Article  PubMed  CAS  Google Scholar 

  • de Wardener H. E., Alaghband-Zadeh J., Bitensky L., Chayen J., Clarkson E. M., and MacGregor G. A. (1981) Effect of sodium intake on ability of human plasma to inhibit renal Na+,K+ adenosine triphosphatasein vitro.Lancet 1, 411–412.

    Article  PubMed  Google Scholar 

  • Fagoo M., Braquet P., Robin J. P., Esanu A., and Godfraind T. (1986) Evidence that mammalian lignans show endogenous digitalis-like activities.Biochem. Biophys. Res. Commun. 134, 1064–1070.

    Article  PubMed  CAS  Google Scholar 

  • Fagoo M. and Godfraind T. (1985) Further characterization of cardiodigin, Na+,K+-ATPase inhibitor extracted from mammalian tissues.FEBS Lett. 184, 150–154.

    Article  PubMed  CAS  Google Scholar 

  • Fishman M. C. (1979) Endogenous digitalis-like activity in mammalian brain.Proc. Natl. Acad. Sci. USA 76, 4661–4663.

    Article  PubMed  CAS  Google Scholar 

  • Flier J. S. (1978) Ouabain-like activity in toad skin and its implications for endogenous regulation of ion transport.Nature 274, 285–286.

    Article  PubMed  CAS  Google Scholar 

  • Gruber K. A., Whitaker J. M., and Buckalew V. M. Jr. (1980) Endogenous digitalis-like substance in plasma of volume-expanded dogs.Nature 287, 743–745.

    Article  PubMed  CAS  Google Scholar 

  • Gruber K. A., Whitaker J. M., and Buckalew V. M. Jr. (1983) Immunochemical approaches to the isolation of an endogenous digoxin-like factor,Current Topics in Membranes and Transport, vol. 19, Bronner, F. and Kleinzeller A., eds., Academic, New York, pp. 917–921.

    Google Scholar 

  • Haglund M. M. and Schwartzkroin P. A. (1990) Role of Na+,K+ pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices.J. Neurophysiol. 63, 225–239.

    PubMed  CAS  Google Scholar 

  • Halperin J. A. (1989) Digitalis-like properties of an inhibitor of the Na+,K+ pump in human cerebrospinal fluid.J. Neurol. Sci. 90, 217–230.

    Article  PubMed  CAS  Google Scholar 

  • Halperin J. A., Shaeffer R., Galvez L., and Malave S. (1983) Ouabain-like activity in human cerebrospinal fluid.Proc. Natl. Acad. Sci. USA 80, 6101–6104.

    Article  PubMed  CAS  Google Scholar 

  • Hamlyn J. M., Harris D. W., Clark M. A., Rogowski A. C., White R. I., and Ludens J. H. (1989) Isolation and characterization of a sodium pump inhibitor from human plasma.Hypertension 13, 681–689.

    PubMed  CAS  Google Scholar 

  • Hamlyn J. M., Ringel R., Schaeffer J., Levinson P. D., Hamilton B. P., Kowarski A. A., and Blaustein M. P. (1982) A circulating inhibitor of (Na+,K+) ATPase associated with essential hypertension.Nature 300, 650–652.

    Article  PubMed  CAS  Google Scholar 

  • Haupert G. T. and Sancho J. M. (1979) Sodium transport inhibitor from bovine hypothalamus.Proc. Natl. Acad. Sci. USA 76, 4658–4660.

    Article  PubMed  CAS  Google Scholar 

  • Havrankova J., Schmechel D., Roth J., and Brownstein M. (1978) Identification of insulin in rat brain.Proc. Natl. Acad. Sci. USA 75, 5735–5741.

    Article  Google Scholar 

  • Hirano T., Oka K., Naitoh T., Hosaka K., and Mitsuhashi H. (1989) Endogenous digoxin-like activity of mammalian-lignans and their derivatives.Res. Comm. Chem. Path. Pharmacol. 64, 227–240.

    CAS  Google Scholar 

  • Hook J. B. (1969) A positive correlation between natri-uresis and inhibition of renal Na−K-adenosine triphosphatase inhibition by ouabain.Proc. Soc. Expl. Biol. and Med. 131, 731–734.

    CAS  Google Scholar 

  • Josephson L. and Cantley L. C. Jr. (1977) Isolation of a potent Na+,K+-ATPase inhibitor from striated muscle.Biochemistry 16, 4572–4578.

    Article  PubMed  CAS  Google Scholar 

  • Kelly R. A., O'Hara D. S., Canessa M. L., Mitch W. E., and Smith T. W. (1985) Characterization of digitalis-like factors in human plasma.J. Biol. Chem. 260, 11,396–11,405.

    CAS  Google Scholar 

  • Kelly R. A., O'Hara D. S., Mitch W. E., and Smith T. W. (1986) Identification of Na+K+-ATPase inhibitors in human plasma as nonestrified fatty acids and lysophospholipids.J. Biol. Chem. 261, 11,704–11,711.

    CAS  Google Scholar 

  • Lichtstein D., Minc D., Bourrit A., Deutsch J., Karlish S. J. D., Belmaker H., Rimon R., and Palo J. (1985) Evidence for the presence of “ouabain like” compound in human cerebrospinal fluid.Brain Res. 325, 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Lichtstein D. and Samuelov S. (1980) Endogenous ouabain like activity in brain.Biochem. Biophys. Res. Comm. 96, 1518–1523.

    Article  PubMed  CAS  Google Scholar 

  • Masugi F., Ogihara T., Hasegawa T., Tomii A., Nagano M., Higashimori K., Kumahara K., and Terano Y. (1986) Circulating factor with ouabain-like immunoreactivity in patients with primary aldosteronism.Biochem. Biophys. Res. Comm. 135, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Masugi F., Ohihara T., Sakaguchi K., Tomii A., Hasegawa T., Chen Y., Azuma M., and Kumahana Y. (1988) Partial purification and properties of a plasma ouabain-like inhibitor of Na+,K+-ATPase in patients with essential hypertension.J. Hypertens. 6(Suppl. 4), S351-S353.

    CAS  Google Scholar 

  • McGrail K. M., Phillips J. M., and Sweadner K. J. (1991) Immunofluorescent localization of three Na+,K+-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na+,K+-ATPase.J. Neurosci. 11, 381–391.

    PubMed  CAS  Google Scholar 

  • McIlwain H. (1969) Cerebral energy metabolism and membrane phenomena,Basic Mechanisms, of the Epilepsies, Jasper H. H., Ward A. A. Jr., and Pope A., eds., Little Brown, Boston, pp. 83–97.

    Google Scholar 

  • Millet J. A., Holland S. M., Alaghband-Zadeh J., and de Wardener H. E. (1987) Na+,K+-ATPase-inhibiting and glucose-6-phosphate dehydrogenase-stimulating activity of plasma and hypothalamus of the Okamoto spontaneously hypertensive rats.J. Endocr. 112, 299–303.

    Google Scholar 

  • Nowicki S., Enero M. A., and Rodríguez de Lores Arnaiz G. (1990) Diuretic and natriuretic effect of a brain soluble fraction that inhibits neuronal Na+,K+-ATPase.Life Sci. 47, 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino de Iraldi A. and Rodríguez de Lores Arnaiz G. (1989) Effect of ouabain on the storage and release of neurotransmitters in monoaminergic synaptic vesicles: a histochemical study.J. Neurochem. 52(Suppl.), S78 (abstract)

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. (1983) Neuronal Na+,K+-ATPase and its regulation by catecholamines.Neural Transmission, Learning and Memory, Caputto R. and Ajmone Marsan C., eds., Raven, New York, pp. 147–158.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. (1987) The inhibition of neuronal Na+,K+-ATPase by dopamine is not prevented by the neuroleptics haloperidol, droperidol, or spiperone.Com. Biol. 5, 275–283.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. (1990a) A study of tissue-specificity of brain soluble fractions effect on Na+,K+-ATPase activity.Neurochem. Res. 15, 289–294.

    Article  PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G. (1990b) Ouabain-like properties of brain endogenous factors.Com. Biol. 8, 313–332.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G., Alberici M., and De Robertis E. (1967) Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex.J. Neurochem. 14, 215–225.

    Article  Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Antonelli de Gómez de Lima M. (1981) The effect of several neurotransmitter substances on nerve ending membrane ATPase.Acta Physiol. Latinoam. 31, 39–44.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Antonelli de Gómez de Lima M. (1986) Partial characterization of an endogenous factor which modulates the effect of catecholamines on synaptosomal Na+,K+-ATPase.Neurochem. Res. 11, 933–947.

    Article  PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Antonelli de Gómez de Lima M. (1988) The aging of a brain soluble fraction modifies its effect on the activity of neuronal Na+,K+-ATPase.Life Sci. 42, 2683–2689.

    Article  PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G., Antonelli de Gómez de Lima M., and Girardi E. (1988) Different properties of two brain extracts separated in Sephadex G-50 that modify synaptosomal ATPase activities.Neurochem. Res. 3, 229–235.

    Article  Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Bojorge G. (1986) Contrasting effects produced by insulin “in vitro” on Na+,K+-ATPase activity of rat cerebral cortex homogenates.Com. Biol. 4, 411–419.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. and De Robertis E. (1972) Properties of the isolated nerve endings,Current Topics in Membranes and Transport, vol. 3, Bronner F. and Kleinzeller A., eds., Academic, New York, pp. 237–272.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Mistrorigo de Pacheco M. (1978) Regulation of (Na+,K+) adenosine triphosphatase of nerve ending membranes: action of norepinephrine and a soluble factor.Neurochem. Res. 3, 733–744.

    Article  PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Pellegrino de Iraldi A. (1989) Release of catecholamines by an endogenous inhibitor of neuronal Na+,K+-ATPase.J. Neurochem. 52(Suppl.), S79 (abstract).

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Pellegrino de Iraldi A. (1991) The release of catecholamines by an endogenous factor that inhibits neuronal Na+,K+-ATPase.Micr. Electr. Biol. Cel. 15, 93–106.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. and Peña C. (1992) Partial purification of endogenous Na+,K+-ATPase inhibitors.Trans. Am. Soc. Neurochem. 23(1), 352 (abstract).

    Google Scholar 

  • Rossier B. C., Geering K., and Kraehenbuhl J. P. (1987) Regulation of the sodium pump: how and why? TIBS12, 483–487.

    CAS  Google Scholar 

  • Schaefer A., Unyi G., and Pfeifer A. F. (1972) The effects of a soluble factor and of catecholamines on the activity of adenosine triphosphatase in subcellular fractions of rat brain.Biochem. Pharmacol. 21, 2289–2294.

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Y., Gotsman M., Deutsch J., Kachalsky S., and Lichtstein D. (1984) Endogenous ouabain-like compound increases heart muscle contractility.Nature 307, 369–371.

    Article  PubMed  CAS  Google Scholar 

  • Skou J. C. (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves.Biochem. Biophys. Acta 23, 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Stahl W. L. (1986) The Na+,K+-ATPase of nervous tissue.Neurochem. Int. 4, 449–476.

    Article  Google Scholar 

  • Swann A. C. (1984a) Na+,K+-ATPase and noradrenergic function: recovery of enzyme activity after norepinephrine depletion.Brain Res. 321, 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Swann A. C. (1984b) Na+,K+-Adenosine triphosphatase regulation by the sympathetic nervous system: effects of noradrenergic stimulation and lesionin vivo.J. Pharmacol. Exp. Ther. 228, 304–311.

    PubMed  CAS  Google Scholar 

  • Swann A. C. (1986) Brain Na+,K+-ATPase: alteration of ligand affinities and conformation by chronic ethanol and noradrenergic stimulationin vivo.J. Neurochem. 47, 707–714.

    Article  PubMed  CAS  Google Scholar 

  • Swann A. C. (1988) Dexamethasone and adrenalectomy alter brain (Na+,K+)-ATPase responses to noradrenergic stimulation or depletion.Eur. J. Pharmacol. 158, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Sweadner K. (1989) Isozymes of Na+,K+-ATPase.Biochem. Biophys. Acta 988, 185–220.

    PubMed  CAS  Google Scholar 

  • Tal D. M., Katchalsky S., Lichtstein D., and Karlish S. J. D. (1986) Endogenous ouabain-like activity in bovine plasma.Biochem. Biophys. Res. Comm. 135, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Tal D. M., Yanuck M. D., van Hall G., and Karlish S. J. D. (1989) Identification of Na+,K+-ATPase inhibitors in bovine plasma as fatty acids and hydrocarbons.Biochem. Biophys. Acta 985, 55–59.

    Article  PubMed  CAS  Google Scholar 

  • Tamura M., Harris T. M., Higashimori K., Sweetman B. J., Blair I. A., and Inagami T. (1987) Lysophosphatidylcholines containing polyunsaturated fatty acids were founds as Na+,K+-ATPase inhibitors in acutely volume-expanded hog.Biochemistry 26, 2797–2806.

    Article  PubMed  CAS  Google Scholar 

  • Tamura M., Kuwano H., Kinoshita T., and Inagami T. (1985) Identification of linoleic and oleic acids as endogenous Na+,K+-ATPase inhibitors from acute volume-expanded hog plasma.J. Biol. Chem. 260, 9672–9677.

    PubMed  CAS  Google Scholar 

  • Tamura M., Lam T. T., and Inagami T. (1988) Isolation and characterization of a specific endogenous Na+,K+-ATPase inhibitor from bovine adrenal.Biochemistry,27, 4244–4253.

    Article  PubMed  CAS  Google Scholar 

  • Underwood E. J. (1977)Trace Elements in Human and Animal Nutrition, Academic, London.

    Google Scholar 

  • Vasdev S. C., Johnson E., Longerich L., Prabhakaran V. M., and Gault M. H. (1987) Plasma endogenous digitalis-like factors in healthy individuals and in dialysis dependent and kidney transplant patients.Clin. Nephr. 27, 169–174.

    CAS  Google Scholar 

  • Vasdev S. C., Longerich L., Prabhakaran V. M., Triggle C. R., and Gault M. H. (1989) Lipids as endogenous Na+,K+-ATPase inhibitors in plasma of healthy individuals and in dialysis dependent patients.Clin. Biochem. 22, 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Viola M. S., Bojorge G., Rodríguez de Lores Arnaiz G., and Enero M. A. (1989) Stimulation of Na+,K+-ATPase activity in certain membranes of the rat central nervous system (CNS) by acute administration of desipramine (DMI).Cell. Mol. Neurobiol. 9, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Vizi E. S. (1978) Na+,K+-activated adenosine triphosphatase as a trigger in transmitter release.Neuroscience 3, 367–384.

    Article  PubMed  CAS  Google Scholar 

  • Whitmer K. R., Wallick E. T., Epps D. E., Lane L. K., Collins J. H., and Schwartz A. (1982) Effects of extracts of rat brain on the digitalis receptor.Life Sci. 30, 2261–2275.

    Article  PubMed  CAS  Google Scholar 

  • Wu P. H. (1986) Na+,K+-ATPase in nervous tissue,Neuromethods, Enzymes, vol. 5, Boulton A. A., Baker G. B., and Wu P. H., eds., Humana, Clifton, NJ, pp. 451–502.

    Chapter  Google Scholar 

  • Yamada K., Goto A., Ishii M., Yoshioka M., and Sugimoto T. (1988) Dissociation of digoxin-like immunoreactivity and Na+,K+-ATPase inhibitory activity in rat plasma.Experientia 44, 992,993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnaiz, G.R.d.L. In search of synaptosomal Na+, K+-ATPase regulators. Mol Neurobiol 6, 359–375 (1992). https://doi.org/10.1007/BF02757941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757941

Index Entries

Navigation