Skip to main content
Log in

Proliferation markers and their uses in the study of endocrine tumors

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

A growing body of literature supports the view that the proliferative activity (PA) of tumor cells is an important prognostic indicator for a variety of different tumors. We examined the role of PA in diagnosis and prediction or malignancy of endocrine tumors (ETs) of pituitary gland, pancreas, thyroid, parathyroid glands, adrenal glands, paraganglia, gastroenteric tract, and lung. The data in the literature indicate that the assessment of PA is not a diagnostic indicator of malignancy especially at the individual case level, whereas it can be useful for identifying subsets of malignant tumors with different aggressiveness potential, as well as for choosing therapeutic options in metatstatic lesions. We hope that, in the near future, multiparametric approaches including PA markers, cell growth and differentiation factors, and oncogenes will yield valuable information for diagnosis and prognosis of ETs also in individual cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hough AJ, Hollifield HW, Page DL, Hartmann WH. Prognostic factors in adrenal cortical tumors. A mathematical analysis of clinical and morphological data. Am J Clin Pathol 72:390–399, 1979.

    PubMed  CAS  Google Scholar 

  2. Page DL, Hough AJ, Gray GF. Diagnosis and prognosis of adrenocortical neoplasm. Arch Pathol Lab Med 110:993,994, 1986.

    PubMed  CAS  Google Scholar 

  3. van Slooten H, Schaberg A, Smeenk D, Moolenaar AJ. Morphologic characteristics of benign and malignant adrenocortical tumors. Cancer 55:766–773, 1985.

    Article  PubMed  Google Scholar 

  4. Wagner M, Walter PR, Ghnassia JP, Gasser B. Tumeurs de la corticosurrénale. Part I: evaluation prognostique d’une série de 17 cas par le criteres de Weiss. Ann Pathol 13:306–311, 1993.

    PubMed  CAS  Google Scholar 

  5. Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol 8:163–169, 1984.

    PubMed  CAS  Google Scholar 

  6. Weiss LM, Medeiros LJ, Vickery AL. Pathologic features of prognostic significance in adrenocortical carcinoma. Am J Surg Pathol 13:202–206, 1989.

    PubMed  CAS  Google Scholar 

  7. Bondeson L, Sandelin K, Grimelius L. Histopathological variables and DNA cytometry in parathyroid carcinoma. Am J Surg Pathol 17:820–829, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Chan JKC, Tsang WYW. Endocrine malignancies that may mimic benign lesions. Semin Diagn Pathol 12:45–63, 1995.

    PubMed  CAS  Google Scholar 

  9. Hall PA, Levison DA, Wright NA, eds. Assessment of cell proliferation in clinical practice. London: Springer-Verlag, 1992.

    Google Scholar 

  10. Aherne WA, Al-Wiswazy M, Ford D, Jellerer AM. Assessment of inherent fluctuations of mitotic and labelling indexes of human tumours. Br J Cancer 36:577–591, 1977.

    PubMed  CAS  Google Scholar 

  11. Kerr JFR, Winterford CM, Harmon BV. Apoptosis: its significance in cancer and cancer therapy. Cancer 73:2013–2026, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Grogan TM, Lippman SM, Spier CM, Slymen DJ, Rybski JA, Rangel CS, Richter LC, Miller TP. Independent prognostic significance of a nuclear proliferation antigen in diffuse large cell lymphomas as determined by the monoclonal antibody Ki-67. Blood 71:1157–1160, 1988.

    PubMed  CAS  Google Scholar 

  13. Tungekar MF, Gatter KC, Dunnill MS, Mason DY. Ki-67 immunostaining and survival in operable lung cancer. Histopathology 19:545–550, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Wintzer H-O, Zipfel I, Schulte-Mönting J, Hellerich U, von Kleist S. Ki-67 immunostaining in human breast tumors and its relationship to prognosis. Cancer 67:421–428, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Quinn CM, Wright NA. Mitosis counting. In: Hall PA, Levison DA, Wright NA, eds. Assessment of cell proliferation in clinical practice. London: Springer-Verlag, 1992; 177–191.

    Google Scholar 

  16. van Dienst PJ, Baak JPA, Matze-Cok P, Wisse-Brekelmans ECM, van Galen CM, Kurver PHJ, Bellot SM, Fijnheer J, van Gorp LHM, Kwee WS, Los J, Peterse JL, Ruitenberg HM, Schapers RFM, Schipper MEI, Somsen JC, Willig AWPM, Ariens AT. Reproducibility of mitosis counting in 2469 breast cancer specimens: results from the multicenter morphometric mammary carcinoma project. Hum Pathol 23:603–607, 1992.

    Article  Google Scholar 

  17. Haapasalo H, Collan Y. Mitosis counting in tumors. Hum Pathol 22:728,729, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Simpson JF, Dutt PL, Page DL. Expression of mitoses per thousand cells and cell density in breast carcinomas: a proposal. Hum Pathol 23:608–611, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Wright NA. Cell proliferation in health and disease. In: Antony PP, MacSeen RNM, eds. Recent advances in histopathology. Edinburgh: Churchill Livingstone, 1984; 17–33.

    Google Scholar 

  20. Baak JPA. Mitosis counting in tumors. Hum Pathol 21:683–685, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Dressler LG, Bartow SA. DNA flow cytometry in solid tumors: practical aspects and clinical applications. Semin Diagn Oncol 6:55–82, 1989.

    CAS  Google Scholar 

  22. Dervan PA, Gilmartin LG, Loftus BM, Carney DN. Breast carcinoma kinetics: argyrophilic nucleolar organizer region counts correlate with Ki-67 scores. Am J Clin Pathol 92:401–407, 1989.

    PubMed  CAS  Google Scholar 

  23. Meyer JS, Prey MU, Babcock DS, McDivitt RW. Breast carcinoma cell kinetics, morphology, stage, and host characteristics: a thymidine labeling study. Lab Invest 54:41–51, 1986.

    PubMed  CAS  Google Scholar 

  24. Gratzner HG. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474,475, 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H. Cyclin/PCNA is the auxiliary protein of DNA polymerase-δ. Nature 326:515–517, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Bravo R, Macdonald-Bravo H. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol 105:1549–1554, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Burford-Mason AP, MacKey AJ, Cummins M, Dardick I. Detection of proliferating cell nuclear antigen in paraffin-embedded specimens is dependent on preembedding tissue handling and fixation. Arch Pathol Lab Med 118:1007–1013, 1994.

    PubMed  CAS  Google Scholar 

  28. Coltrera MD, Skelly M, Gown AM. Anti-PCNA antibody PC10 yields unreliable proliferation indexes in routinely processed, deparaffinized, formalin-fixed tissue. Appl Immunohistochem 1:193–200, 1993.

    Google Scholar 

  29. McCormick D, Yu C, Hobbs C, Hall PA. The relevance of antibody concentration to the immunohistological quantification of cell proliferation-associated antigens. Histopathology 22:543–547, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Hall PA, Levison DA, Woods AL, Yu CCW, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R, Waseem NH, Lane DP. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin section: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162:285–294, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Pelosi G, Bresaola E, Manfrin E, Rodella S, Schiavon I, Iannucci A. Immunocytochemical detection of cell proliferation-related antigens in cytologic smears of human malignant neoplasms using PC10, reactive with proliferating cell nuclear antigen, and Ki-67: a comparative study. Arch Pathol Lab Med 116:510–516, 1994.

    Google Scholar 

  32. Pelosi G, Bresaola E, Rodena S, Manfrin E, Piubello Q, Schiavon I, Iannucci A. Expression of proliferating cell nuclear antigen, Ki-67 antigen, estrogen receptor protein, and tumor suppressor p53 gene in cytologic samples of breast cancer: an immunochemical study with clinical, pathobiological, and histologic correlations. Diagn Cytopathol 11:131–140, 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E, Flad H-D. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 138:867–873, 1991.

    PubMed  CAS  Google Scholar 

  34. Scott RJ, Hall PA, Haldane JS, van Noorden S, Price Y, Lane DP, Wright NA. A comparison of immunohistochemical markers of cell proliferation with experimentally determined growth fraction. J Pathol 165:173–178, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Bruno S, Dazynkiewicz Z. Cell cycle dependent expression and stability of the nuclear antigen detected by Ki-67 antibody. Cell Prolif 25:31–40, 1992.

    PubMed  CAS  Google Scholar 

  36. Sasaki K, Matsumura K, Tsuji T, Shinozaki F, Takahashi M. Relationship between labeling indices of Ki-67 and BrdUrd in human malignant tumors. Cancer 62:989–993, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Key G, Larsen Petersen J, Becker MHG, Duchrow M, Schlüter C, Askaa J, Gerdes J. New antiserum against Ki-67 antigen suitable for double immunostaining of paraffin wax sections. J Clin Pathol 46:1080–1084, 1993.

    Article  PubMed  CAS  Google Scholar 

  38. Cattoretti G, Becker MHG, Key G, Duchrow M, Schlüter C, Galle J, Gerdes J. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB1 and MIB3) detect proliferating cells in microwave processed formalin-fixed paraffin sections. J Pathol 168:357–364, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Kreipe H, Alm P, Olsson H, Hauberg M, Fischer L, Parwaresch R. Prognostic significance of a formalin-resistant nuclear proliferation antigen in mammary carcinomas as determined by the monoclonal antibody Ki-S1. Am J Pathol 142:651–657, 1993.

    PubMed  CAS  Google Scholar 

  40. Kreipe H, Wacker H-H, Heidebrecht HJ, Haas K, Hauberg M, Tiemann M, Parwaresch R. Determination of the growth fraction in non-Hodgkin’s lymphomas by monoclonal antibody Ki-S5 directed against a formalin-resistant epitope of the Ki-67 antigen. Am J Pathol 142:1689–1694, 1993.

    PubMed  CAS  Google Scholar 

  41. Kelleher L, Magee HM, Dervan PA. Evaluation of cell-proliferation antibodies reactive in paraffin sections. Appl Immunohistochem 2:164–170, 1994.

    Google Scholar 

  42. Alanen KA, Joensuu H, Klemi PJ, Marin S, Alavaikko M, Nevalainen TJ. DNA ploidy in pancreatic neuroendocrine tumors. Am J Clin Pathol 93:784–788, 1990.

    PubMed  CAS  Google Scholar 

  43. Klöppel G, Heitz PU. Pancreatic endocrine tumors. Pathol Res Pract 183:155–168, 1988.

    PubMed  Google Scholar 

  44. Venkatesh S, Ordonez NG, Ajani J, Schultz PN, Hickey RC, Johnston DA, Samaan NA. Islet cell carcinoma of the pancreas: a study of 98 patients. Cancer 65:354–357, 1990.

    Article  PubMed  CAS  Google Scholar 

  45. Capella C, Heitz PU, Höfler H, Solcia E, Klöppel G. Revised classification of neuroendocrine tumors of the lung, pancreas and gut. Virchows Arch 425:547–560, 1995.

    Article  PubMed  CAS  Google Scholar 

  46. Kenny BD, Sloan JM, Hamilton PW, Watt PCH, Johnston CF, Buchanan KD. The role of morphometry in predicting prognosis in pancreatic islet cell tumors. Cancer 64:460–465, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. von Herbay A, Sieg B, Schürmann G, Hofmann WJ, Betzler M, Otto HF. Proliferative activity of neuroendocrine tumors of the gastroenteropancreatic endocrine system: DNA flow cytometric and immunohistological investigations. Gut 32:949–953, 1991.

    Article  Google Scholar 

  48. Pelosi G, Zamboni G, Doglioni C, Rodella S, Bresaola E, Iacono C, Serio G, Iannucci A, Scarpa A. Immunodetection of proliferating cell nuclear antigen assesses the growth fraction and predicts malignancy in endocrine tumors of the pancreas. Am J Surg Pathol 16:1215–1225, 1992.

    Article  PubMed  CAS  Google Scholar 

  49. Pelosi G, Pasini F, Bresaola E, Rodella S, Castelli P, Iacono C, Serio G, Zamboni G. Endocrine tumors of the pancreas: the proliferative activity assessed by Ki-67 immunostaining on paraffin sections is an independent predictor for malignancy. A comparative study of survival with immunostaining for PCNA and progesterone receptor protein, mitotic index, and clinicopathological variables. Am J Surg Pathol (submitted).

  50. Atkin SL, Landoldt AM, Jeffreys RV, Diver M, Radclife J, White MC. Basic fibroblastic growth factor stimulates prolactin secretion from human anterior pituitary adenomas without affecting adenoma cell proliferation. J Clin Endocrinol Metab 77:831–837, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Nagashima T, Murovic JA, Hoshino T, Wilson CB, DeArmond SJ. The proliferative potential of human pituitary tumors in situ. J Neurosurg 64:588–593, 1986.

    PubMed  CAS  Google Scholar 

  52. Shibuya M, Saito F, Miwa T, Davis RL, Wilson CB, Hoshino T. Histochemical study of pituitary adenomas with Ki-67 and anti-DNA polymerase α monoclonal antibodies, bromodeoxyuridine labeling, nucleolar organizer region counts. Acta Neuropathol 84:178–183, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Joensuu H, Klemi PJ. DNA aneuploidy in adenomas of endocrine organs. Am J Pathol 132:145–151, 1988.

    PubMed  CAS  Google Scholar 

  54. Kitz K, Knosp E, Koos WT, Korn A. Proliferation in pituitary adenomas: measurement by MAb KI 67. Acta Neurochirurgica 53(Suppl.):60–64, 1991.

    PubMed  CAS  Google Scholar 

  55. Knosp E, Kitz K, Perneczky A. Proliferation activity in pituitary adenomas: measurement by monoclonal antibody Ki-67. Neurosurgery 25:927–930, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Knosp E, Kitz K, Steiner E, Matula C. Pituitary adenomas with parasellar invasion. Acta Neurochirurgica 53(Suppl.):65–71, 1991.

    PubMed  CAS  Google Scholar 

  57. Landolt AM, Shibata T, Kleihues P. Growth rate of human pituitary adenomas. J Neurosurg 67:803–806, 1987.

    PubMed  CAS  Google Scholar 

  58. Hsu DW, Hakim F, Biller BMK, De La Monte S, Zervas NT, Klibanski A, Hedley-Whyte ET. Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J Neurosurg 78:753–761, 1993.

    Article  PubMed  CAS  Google Scholar 

  59. Giordana MT, Cavalla P, Allegranza A, Pollo B. Intracranial dissemination of pituitary adenoma. Case report and review of the literature. Ital J Neurol Sci 15:195–200, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Harlow S, Roth SI, Bauer K, Marshall RB. Flow cytometric analysis of normal and pathologic parathyroid glands. Mod Pathol 4:310–315, 1991.

    PubMed  CAS  Google Scholar 

  61. Hosokawa S. Study on the cellular proliferation and endocrine activity of the parathyroid gland in hyperparathyroidism. Nippon Hinyokika Gakkai Zasshi 84:1424–1431, 1993.

    PubMed  CAS  Google Scholar 

  62. Irvin GL, Bagwell CB. Identification of histologically undetectable parathyroid hyperplasia by flow cytometry. Am J Surg 138:567–571, 1979.

    Article  PubMed  Google Scholar 

  63. Obara T, Fujimoto Y, Hirayama A, Kanaji Y, Ito Y, Kodama T, Ogata T. Flow cytometric DNA analysis of parathyroid tumors with special reference to its diagnostic and prognostic value in parathyroid carcinoma. Cancer 65:1789–1793, 1990.

    Article  PubMed  CAS  Google Scholar 

  64. Loda M, Lipman J, Cuckor B, Bur M, Kwan P, DeLellis R. Nodular foci in parathyroid adenomas and hyperplasia: an immunohistochemical analysis of proliferative activity. Hum Pathol 25:1050–1056, 1994.

    Article  PubMed  CAS  Google Scholar 

  65. Abbona GC, Papotti M, Gasparri G, Bussolati G. Proliferative activity in parathyroid tumors as detected by Ki-67 immunostaining. Hum Pathol 26:135–138, 1995.

    Article  PubMed  CAS  Google Scholar 

  66. Schantz A, Castleman B. Parathyroid carcinoma. A study of 70 cases. Cancer 31:600–605, 1973.

    Article  PubMed  CAS  Google Scholar 

  67. Snover DC, Focar K. Mitotic activity in benign parathyroid disease. Am J Clin Pathol 75:345–347, 1981.

    PubMed  CAS  Google Scholar 

  68. Cryns VL, Thor A, Xu H-J, Hu S-H, Wierman ME, Vickery AL, Benedict WF, Arnold A. Loss of the retinoblastoma tumorsuppressor gene in parathyroid carcinoma. N Engl J Med 330:757–761, 1994.

    Article  PubMed  CAS  Google Scholar 

  69. Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA. Physical interaction of the retinoblastoma protein with the human D cyclins. Cell 73:499–511, 1993.

    Article  PubMed  CAS  Google Scholar 

  70. Harbour JW, Lai SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ. Abnormalities in structures and expression of the human retinoblastoma gene in SCLC. Science 241:353–357, 1988.

    Article  PubMed  CAS  Google Scholar 

  71. Bigner SH, Mendelsohn G, Wells SA, Cox EB, Baylin SB, Eggleston JC. Medullary carcinoma of the thyroid in the multiple endocrine neoplasia IIA syndrome. Am J Surg Pathol 5:459–472, 1981.

    PubMed  CAS  Google Scholar 

  72. Lee T-K, Myers RT, Marshall RB, Bong MG, Kardon B. The significance of mitotic rate: a retrospective study of 127 thyroid carcinomas. Hum Pathol 16:1042–1046, 1985.

    PubMed  CAS  Google Scholar 

  73. Mizukami Y, Nonomura A, Michigishi T, Noguchi M, Nakamura S, Hashimoto T. Tumor proliferation-related markers in papillary thyroid carcinomas: correlation with histologic subtypes. Anticancer Res 13:267–272, 1993.

    PubMed  CAS  Google Scholar 

  74. Yoshida A, Kamma H, Asaga T, Masuzawa C, Kawahara S, Mimura T, Ito K. Proliferative activity in thyroid tumors. Cancer 69:2548–2552, 1992.

    Article  PubMed  CAS  Google Scholar 

  75. Hostetter AL, Hrafnkelsoon J, Wingren SOW, Enestrom S, Nordenskjöld B. A comparative study of DNA cytometry methods for benign and malignant thyroid tissue. Am J Clin Pathol 89:760–763, 1988.

    PubMed  CAS  Google Scholar 

  76. Hruban RH, Huvos AG, Traganos F, Reuter V, Lieberman PH, Melamed MR. Follicular neoplasms of the thyroid in men older than 50 years of age: a DNA flow cytometric study. Am J Clin Pathol 94:527–532, 1990.

    PubMed  CAS  Google Scholar 

  77. Johannessen JV, Sobrinho-Simóes M. Well differentiated thyroid tumors. Problems in diagnosis and understanding. Pathol Annu 18:255–284, 1983.

    PubMed  Google Scholar 

  78. Kraemer BB, Srigley JR, Batsakis JG, Silva EG, Goepfert H. DNA flow cytometry of thyroid neoplasms. Arch Otolaryngol 111:34–38, 1985.

    PubMed  CAS  Google Scholar 

  79. Flint A, Davenport RD, Lloyd RV, Beckwith AL, Thompson NW. Cytophotometric measurements of Hürthle cell tumors of the thyroid gland: correlation with pathologic features and clinical behavior. Cancer 61:110–113, 1988.

    Article  PubMed  CAS  Google Scholar 

  80. Salmon I, Gasperin P, Remmelink M, Rahier I, Rocmans P, Pasteels J-L, Heimann R, Kiss R. Ploidy level and proliferation activity measurements in a series of 407 thyroid tumors or other pathologic conditions. Hum Pathol 24:912–920, 1993.

    Article  PubMed  CAS  Google Scholar 

  81. Wallin G, Bäckdahl M, Christensson B, Grimelius L, Auer G. Nuclear protein content and Ki-67 immunoreactivity in non-neoplastic and neoplastic thyroid cells. Analyt Quant Cytol Histol 14:296–303, 1992.

    CAS  Google Scholar 

  82. Basolo, F, Pinchera A, Fugazzola L, Fontanini G, Elisei R, Romei C, Pacini F. Expression of p21 ras protein as a prognostic factor in papillary thyroid cancer. Eur J Cancer 30: 171–174, 1994.

    Article  Google Scholar 

  83. Carr K, Heffess C, Jin L, Lloyd RV. Immunohistochemical analysis of thyroid carcinomas utilizing antibodies to p53 and Ki-67. App Immunohistochem 1:201–207, 1993.

    Google Scholar 

  84. Katoh R, Bray CE, Suzuki K, Komiyama A, Hemmi A, Kawaoi A, Oyama T, Sugai T, Sasou S. Growth activity in hyperplastic and neoplastic human thyroid determined by an immunohistochemical staining procedure using monoclonal antibody MIB-1. Hum Pathol 26:139–146, 1995.

    Article  PubMed  CAS  Google Scholar 

  85. Rigaud C, Bogomoletz W. Apparent lack of usefulness of monoclonal antibody Ki-67 in thyroid tumour pathology: relation to histological typing and classification. Pathol Res Pract 187:198–200, 1991.

    PubMed  CAS  Google Scholar 

  86. Roncalli M, Viale G, Grimelius L, Johansson H, Wilander E, Alfano RM, Springell D, Battezzati PM, Polak JM, Coggi G. Prognostic value of N-myc immunoreactivity in medullary thyroid carcinoma. Cancer 74:134–141, 1994.

    Article  PubMed  CAS  Google Scholar 

  87. Shimitzu T, Usuda N, Yamanda T, Sugenoya A, Idia F. Proliferative activity of human thyroid tumors evaluated by proliferating cell nuclear antigen/cyclin immunohistochemical studies. Cancer 71:2807–2812, 1993.

    Article  Google Scholar 

  88. Soares P, Sobrinho-Simões M. Proliferative activity of human thyroid tumors evaluated by proliferative cell nuclear antigen/cyclin immunohistochemical studies (letter). Cancer 73:2879,2880, 1994.

    Article  PubMed  CAS  Google Scholar 

  89. Tateyama H, Yang Y-P, Eimoto T, Tada T, Inagaki H, Nakamura T, Iwase H, Kobayashi S. Proliferative cell nuclear antigen expression in follicular tumours of the thyroid with special reference to oxyphilic cell lesions. Virchows Arch 424:533–537, 1994.

    Article  PubMed  CAS  Google Scholar 

  90. Xu Y. Proliferating cell nuclear antigen/cyclin (PCNA/cyclin) in thyroid carcinoma. Chung Hua Wai Ko Tsa Chih 31:628,629, 1993.

    PubMed  CAS  Google Scholar 

  91. Schröder S, Böcker W, Baisch H, Burk CG, Arps H, Meiners I, Kastendieck H, Heitz PU, Klöppel G. Prognostic factors in medullary thyroid carcinomas: survival in relation to age, sex, stage, histology, immunocytochemistry, and DNA content. Cancer 61:806–816, 1988.

    Article  PubMed  Google Scholar 

  92. Skopelitou A, Kortolopoulou P, Papanicolaou A, Hadjiyannakis M. Proliferating cell nuclear antigen (PCNA) in medullary thyroid carcinoma. J Cancer Res Clin Oncol 119:379–381, 1993.

    Article  PubMed  CAS  Google Scholar 

  93. Bowlby LS, DeBault LE, Abraham SR. Flow cytometric analysis of adrenal cortical tumor DNA. Relationship between cellular DNA and histopathologic classification. Cancer 58:1499–1505, 1986.

    Article  PubMed  CAS  Google Scholar 

  94. Cibas ES, Medeiros JL, Weinberg DS, Gelb AB, Weiss LM. Cellular DNA profiles of benign and malignant adrenocortical tumors. Am J Surg Pathol 14:948–955, 1990.

    PubMed  CAS  Google Scholar 

  95. Goldblum JR, Shannon R, Kaldjian EP, Thiny M, Davenport R, Thompson N, Lloyd RV. Immunohistochemical assessment of proliferative activity in adrenocortical neoplasms. Mod Pathol 6:663–668, 1993.

    PubMed  CAS  Google Scholar 

  96. Remmelink M, Salmon I, Pasteels J-L, Ardichvili D, Kiss R. Nuclear DNA content, proliferation index and nuclear size determination in normal and tumoral adrenal tissues, pheochromocytomas and metastases. Acta Cytol 39:416–422, 1995.

    PubMed  CAS  Google Scholar 

  97. Ghnassia JP, Wagner M, Gasser B, Walter PR. Tumeurs de la corticosurrénale. II. Evaluation prognostique d’une série de 12 cas par l’anticorps anti-PCNA. Ann Pathol 13:312–316, 1993.

    PubMed  CAS  Google Scholar 

  98. Scott HV, Halter SA. Oncologic aspects of pheochromocytoma. The importance of follow-up. Surgery 96:1061–1066, 1984.

    PubMed  Google Scholar 

  99. Medeiros LJ, Wolf BC, Balogh K, Federman M. Adrenal pheochromocytoma: a clinicopathologic review of 60 cases. Hum Pathol 16:580–589, 1985.

    Article  PubMed  CAS  Google Scholar 

  100. Linnoila RI, Keiser HR, Steinberg SM, Lack EE. Histopathology of benign versus malignant sympathoadrenal paragangliomas. Clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol 21:1168–1180, 1990.

    Article  PubMed  CAS  Google Scholar 

  101. Kliewer KE, Wen D-R, Cancilla PA, Cochran AJ. Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol 20:29–39, 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Montresor E, Iacono C, Nifosi F, Zanza A, Modena S, Zamboni G, Bernardello, F, Serio G. Retroperitoneal paragangliomas: role of immunohistochemistry in the diagnosis of malignancy and in assessment of prognosis. Eur J Surg 160:547–552, 1994.

    PubMed  CAS  Google Scholar 

  103. Unger P, Hoffman K, Pertsemlidis D, Thung S, Wolfe D, Kaneko M. S100 protein-positive sustentacular cells in malignant and locally aggressive adrenal pheochromocytomas. Arch Pathol Lab Med 115:484–487, 1991.

    PubMed  CAS  Google Scholar 

  104. Helman LJ, Cohen PS, Averbuch SD, Cooper MJ, Keiser HR, Israel MA. Neuropeptide Y expression distinguishes malignant from benign pheochromocytoma. J Clin Oncol 7:1720–1725, 1989.

    PubMed  CAS  Google Scholar 

  105. Linnoila RI, Lack EE, Steinberg SM, Keiser HR. Decreased expression of neuropeptides in malignant paragangliomas. An immunohistochemical study. Hum Pathol 19:41–50, 1988.

    Article  PubMed  CAS  Google Scholar 

  106. Furihata M, Ohtsuki Y. Immunohistochemical characterization of HLA-DR-antigen positive dendritic cells in pheochromocytomas and paragangliomas as a prognostic marker. Virchows Arch A Pathol Anat 418:33–39, 1991.

    Article  CAS  Google Scholar 

  107. Hosaka Y, Raiwater LM, Grant CS, Farrow GM, van Heerden JA, Lieber MM. Pheochromocytoma: nuclear deoxyribonucleic acid patterns studied by flow cytometry. Surgery 100:1003–1010, 1986.

    PubMed  CAS  Google Scholar 

  108. Lechago J. Gastrointestinal neuroendocrine cell proliferations. Hum Pathol 25:1114–1122, 1994.

    Article  PubMed  CAS  Google Scholar 

  109. Zamboni G, Franzin G, Bonetti F, Scarpa A, Chilosi M, Colombari R, Menestrina F, Pea M, Iacono C, Serio G, Fiore-Donati L. Small-cell neuroendocrine carcinoma of the ampullary region. A clinicopathologic, immunohistochemical, and ultrastructural study of three cases. Am J Surg Pathol 14:703–713, 1990.

    Article  PubMed  CAS  Google Scholar 

  110. Kujari H, Joensuu H, Klemi P, Asola R, Nordan Elack EE, Cubilla AL, Woodruff JM, Lieberman PH. Extra-adrenal paragangliomas of the peritoneum. A clinicopathologic study of 12 tumors. Am J Surg Pathol 4:109–120, 1980.

    Google Scholar 

  111. Barbareschi M, Girlando S, Mauri FA, Arrigoni GL, Laurino L, Dalla Palma P, Doglioni C. Tumour suppressor gene products, proliferation, and differentiation markers in lung neuroendocrine neoplasms. J Pathol 166:343–350, 1992.

    Article  PubMed  CAS  Google Scholar 

  112. Levine AJ, Momand J, Finley CA. The p53 tumour suppressor gene. Nature 351:453–456, 1991.

    Article  PubMed  CAS  Google Scholar 

  113. Mercer WE, Shields MT, Lin D, Appella E, Ullrich SJ. Growth suppression induced by wild-type p53 protein is accompanied by selective down-regulation of proliferating-cell nuclear antigen expression. Proc Natl Acad Sci USA 88:1958–1962, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelosi, G., Zamboni, G. Proliferation markers and their uses in the study of endocrine tumors. Endocr Pathol 7, 103–119 (1996). https://doi.org/10.1007/BF02739970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739970

Key Words

Navigation