Skip to main content

Advertisement

Log in

Ki67 in endocrine neoplasms: to count or not to count, this is the question! A systematic review from the English language literature

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Endocrine neoplasms are generally slow-growing tumors that can show hormonal activity and give metastases. In most cases they are benign and clearly malignant forms are easy to diagnose. However, borderline forms may occur and be, for the pathologists, very difficult to classify. In these cases, there is a strong need to identify factors that may aid. Official classification systems for endocrine neoplasms are based on the evaluation of proliferation and, in most cases, they rely on mitotic count. In support, the study of Ki67 is carried out which, however, has not yet been included in any official classification system, except for neuroendocrine neoplasms of the gastro-entero-pancreatic tract.

Purpose

The aim of the present study was to investigate the proven or unproven role of Ki67 in endocrine neoplasms, in different districts, in order to bring to light the substantial differences, in terms of proliferation, existing between neoplasms so similar, but at the same time, so different.

Methods

A thorough search of English language literature was performed, looking for articles concerning Ki67 in five endocrine neoplasms (pituitary adenomas, thyroid neoplasms, adrenocortical neoplasms, pheochromocytomas and paragangliomas).

Results

From 2170, 236 articles were selected and it was seen that the endocrine neoplasm in which Ki67 was most studied was the pituitary, where it still shows a controversial role. In other neoplasms different roles were identified.

Conclusion

The pathologist should be aware of the contribution that this proliferative marker can give to the diagnosis and, sometimes, to the therapy selection, for the clinician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Matsumura K, Tsuji T, Shinozaki F et al (1989) Immunohistochemical determination of growth fraction in human tumors. Pathol Res Pract 184:609–613

    CAS  PubMed  Google Scholar 

  2. Scholzen T, Endl E, Wohlenberg C et al (2002) The Ki-67 protein interacts with members of the heterochromatin protein 1 (HP1) family: a potential role in the regulation of higher-order chromatin structure. J Pathol 196:135–144

    CAS  PubMed  Google Scholar 

  3. Cuylen S, Blaukopf C, Politi AZ et al (2016) Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535(7611):308–312

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun X, Kaufman PD (2018) Ki-67: more than a proliferation marker. Chromosoma 127(2):175–186

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Raap M, Ließem S, Rüschoff J et al (2017) Quality assurance trials for Ki67 assessment in pathology. Virchows Arch 471:501–508

    CAS  PubMed  Google Scholar 

  6. Polley MY, Leung SC, McShane LM et al (2013). An international Ki67 reproducibility study. J Natl Cancer Inst 105(24):1897–906

    PubMed  PubMed Central  Google Scholar 

  7. Rindi G, Arnold R, Bosman FT et al (2010). Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Hruban H, et al (eds) WHO classification of tumors of the digestive system. IARC Press, Lyon

    Google Scholar 

  8. Klimstra DS, Kloppel G, LA Rosa S et al (2019). Classification of neuroendocrine neoplasms of the digestive system. In: WHO classification of tumors of the digestive system, 5th edn. IARC Press, Lyon, pp 16–19

  9. Klöppel G, Couvelard A, Hruban RH et al (2017) Neoplasms of the neuroendocrine pancreas. In: WHO classification of tumours of endocrine organs, 4th edin. IARC Press, Lyon, pp 210–239

  10. Brambilla E, Beasley MB, Austin AHM et al (2015) Neuroendocrine tumors. In: Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (eds) WHO Classification of tumours of the lung, pleura, thymus and heart. IARC Press, Lyon

    Google Scholar 

  11. Reid MD, Balci S, Saka B et al (2014) Neuroendocrine tumors of the pancreas: current concepts and controversies. EndocrPathol 25:65–79

    CAS  Google Scholar 

  12. Reid MD, Bagci P, Ohike N et al (2016) Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparativeanalysis of four counting methodologies. Mod Pathol 29:93

    PubMed  Google Scholar 

  13. De Lellis RA, Lloyd RV, Heitz PU et al (2004) Pathology and genetics of tumours of endocrine organs. IARC Press, Lyon, France

    Google Scholar 

  14. Kloppel G, Couvelard A, Hruban RH et al (2017). Neoplasms of the pituitary gland. In: WHO classification of tumors of endocrine organs, 4th edn. Lyon Press, pp 11–45

  15. Landolt AM, Shibata T, Kleihues P (1987) Growth rate of human pituitary adenomas. J Neurosurg 67:803–806

    CAS  PubMed  Google Scholar 

  16. Yonezawa K, Tamaki N, Kokunai T (1997) Clinical features and growth fractions of pituitary adenomas. Surg Neurol 48:494–500

    CAS  PubMed  Google Scholar 

  17. Turner HE, Nagy Z, Gatter KC et al (2000) Proliferation, bcl-2 expression and angiogenesis in pituitary adenomas: relationship to tumour behaviour. Br J Cancer 82:1441–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mastronardi L, Guiducci A, Puzzilli F (2001) Lack of correlation between Ki-67 labelling index and tumor size of anterior pituitary adenomas. BMC Cancer 1:12

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakabayashi H Sunada I, Hara M (2001) Immunohistochemical analyses of cell cycle-related proteins, apoptosis, and proliferation in pituitary adenomas. J Histochem Cytochem 2001(49):1193–1194

    CAS  PubMed  Google Scholar 

  20. Mastronardi L, Guiducci A, Puzzilli F et al (2002) Anterior pituitary adenomas in patients aged more than 65 years: analysis of growth fraction (using the MIB-1 monoclonal antibody) and of clinical features in comparison to younger patients. Clin Neurol Neurosurg 104:44–48

    PubMed  Google Scholar 

  21. Paek KI, Kim SH, Song SH et al (2005) Clinical significance of Ki-67 labeling index in pituitary macroadenoma. J Korean Med Sci 20:489–494

    PubMed  PubMed Central  Google Scholar 

  22. Suzuki M, Minematsu T, Oyama K et al (2006) Expression of proliferation markers in human pituitary incidentalomas. Endocr Pathol 17:263–275

    PubMed  Google Scholar 

  23. Filippella M, Galland F, Kujas M et al (2006) Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin Endocrinol 65:536–543

    Google Scholar 

  24. Righi A, Agati P, Sisto A et al (2012) A classification tree approach for pituitary adenomas. Hum Pathol 43:1627–1637

    CAS  PubMed  Google Scholar 

  25. Ruggeri RM, Costa G, Simone A et al (2012) Cell proliferation parameters and apoptosis indices in pituitary macroadenomas. J Endocrinol Invest 35:473–478

    CAS  PubMed  Google Scholar 

  26. Onishi K, Kamida T, Momii Y et al (2014) The clinical and pathological significance of nitric oxide synthase in human pituitary adenomas: a comparison with MIB-1. Endocrine 46:154–159

    CAS  PubMed  Google Scholar 

  27. Chiloiro S, Bianchi A, Doglietto F et al (2014) Radically resected pituitary adenomas: prognostic role of Ki 67 labeling index in a monocentric retrospective series and literature review. Pituitary 17:267–276

    PubMed  Google Scholar 

  28. Öngürü Ö, Düz B, Şimşek H et al (2015) Pituitary macroadenomas (>3 cm) in young adulthood: Pathologic and proliferative characteristics. Neurol Neurochir Pol 49:212–216

    PubMed  Google Scholar 

  29. Chiloiro S, Doglietto F, Trapasso B et al (2015) Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology 101:143–150

    CAS  PubMed  Google Scholar 

  30. Zaidi HA, Cote DJ, Dunn IF et al (2016) Predictors of aggressive clinical phenotype among immunohistochemically confirmed atypical adenomas. J Clin Neurosci 34:246–251

    CAS  PubMed  Google Scholar 

  31. Kim JS, Lee YS, Jung MJ et al (2016) The Predictive Value of Pathologic Features in Pituitary Adenoma and Correlation with Pituitary Adenoma Recurrence. J Pathol Transl Med 50:419–425

    PubMed  PubMed Central  Google Scholar 

  32. Sadeghipour A, Mahouzi L, Salem MM et al (2017) Ki67 Labeling Correlated With Invasion But Not With Recurrence. Appl Immunohistochem Mol Morphol 25:341–345

    CAS  PubMed  Google Scholar 

  33. Basaran R, Onoz M, Bolukbasi FH et al (2017) Low o6-methylguanine-DNA methytransferase (MGMT) and pan-cytokeratin (pan-ck) expression via immunohistochemistry in pituitary adenomas. Acta Endocrinol 13:282–293

    CAS  Google Scholar 

  34. Sen A, Das C, Mukhopadhyay M et al (2017) Cytohistological correlation in pituitary tumor and immunological assessment with the help of Ki-67. J Postgrad Med 63:96–99

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Del Basso De Caro M, Solari D, Pagliuca F et al (2017) Atypical pituitary adenomas: clinical characteristics and role of ki-67 and p53 in prognostic and therapeutic evaluation. A series of 50 patients. Neurosurg Rev 40:105–114

    PubMed  Google Scholar 

  36. Glebauskiene B, Liutkeviciene R, Vilkeviciute A et al (2018) Association of Ki-67 Labelling Index and IL-17A with Pituitary Adenoma. Biomed Res Int 2018:7490585

    PubMed  PubMed Central  Google Scholar 

  37. Lv L, Hu Y, Yin S et al (2018) Clinically aggressive phenotype: A clinicopathological case series of atypical pituitary adenomas. Clin Neurol Neurosurg 167:93–98

    PubMed  Google Scholar 

  38. Ceccato F, Regazzo D, Barbot M et al (2018) Early recognition of aggressive pituitary adenomas: a single-centre experience. Acta Neurochir 160:49–55

    PubMed  Google Scholar 

  39. Petry C, Poli JHZ, de Azevedo Dossin I et al (2019) Evaluation of the potential of the Ki67 index to predict tumor evolution in patients with pituitary adenoma. Int J Clin Exp Pathol 12:320–326

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Das C, Mondal P, Mukhopadhyay M et al (2019) Evaluation of prognostic utility of Ki-67, P53, and O-6-methylguanine-DNA methyltransferase expression in pituitary tumors. J Lab Physicians 11:323–329

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grimm F, Maurus R, Beschorner R et al (2019) Ki-67 labeling index and expression of p53 are non-predictive for invasiveness and tumor size in functional and nonfunctional pituitary adenomas. Acta Neurochir 161:1149–1156

    PubMed  Google Scholar 

  42. Hasanov R, Aydoğan Bİ, Kiremitçi S et al (2019) The Prognostic Roles of the Ki-67 Proliferation Index, P53 Expression, Mitotic Index, and Radiological Tumor Invasion in Pituitary Adenomas. Endocr Pathol 30:49–55

    CAS  PubMed  Google Scholar 

  43. Asioli S, Righi A, Iommi M et al (2019) Validation of a clinicopathological score for the prediction of post-surgical evolution of pituitary adenoma: retrospective analysis on 566 patients from a tertiary care centre. Eur J Endocrinol 180:127–134

    CAS  PubMed  Google Scholar 

  44. Jaffrain-Rea ML, Di Stefano D, Minniti G et al (2002) A critical reappraisal of MIB-1 labelling index significance in a large series of pituitary tumours: secreting versus non-secreting adenomas. Endocr Relat Cancer 9:103–113

    CAS  PubMed  Google Scholar 

  45. Mizoue T, Kawamoto H, Arita K et al (1997) MIB1 immunopositivity is associated with rapid regrowth of pituitary adenomas. Acta Neurochir; 139:426–431

    CAS  PubMed  Google Scholar 

  46. Chacko G, Chacko AG, Lombardero M et al (2009) Clinicopathologic correlates of giant pituitary adenomas. J Clin Neurosci 16:660–665

    PubMed  Google Scholar 

  47. Madsen H, Borges TM, Knox AJ et al (2011) Giant pituitary adenomas: pathologic-radiographic correlations and lack of role for p53 and MIB-1 labeling. Am J Surg Pathol 35:1204–1213

    PubMed  Google Scholar 

  48. Matsuyama J (2012) Ki-67 expression for predicting progression of postoperative residual pituitary adenomas: correlations with clinical variables. Neurol Med Chir 52:563–569

    Google Scholar 

  49. Knosp E, Kitz K, Steiner E et al (1991) Pituitary adenomas with parasellar invasion. Acta Neurochir Suppl 53:65–71

    CAS  PubMed  Google Scholar 

  50. Kawamoto H, Uozumi T, Kawamoto K et al (1995) Analysis of the growth rate and cavernous sinus invasion of pituitary adenomas. Acta Neurochir 136:37–43

    CAS  PubMed  Google Scholar 

  51. Mastronardi L, Guiducci A, Spera C et al (1999) Ki-67 labelling index and invasiveness among anterior pituitary adenomas: analysis of 103 cases using the MIB-1 monoclonal antibody. J Clin Pathol 52:107–111

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao D, Tomono Y, Nose T (1999) Expression of P27kip1 and Ki-67 in pituitary adenomas: an investigation of marker of adenoma invasiveness. Acta Neurochir 141:187–192

    CAS  PubMed  Google Scholar 

  53. Abe T, Sanno N, Osamura YR et al (1997) Proliferative potential in pituitary adenomas: measurement by monoclonal antibody MIB-1. Acta Neurochir 139:613–618

    CAS  PubMed  Google Scholar 

  54. Pizarro CB, Oliveira MC, Coutinho LB et al (2004) Measurement of Ki-67 antigen in 159 pituitary adenomas using the MIB-1 monoclonal antibody. Braz J Med Biol Res 37:235–243

    CAS  PubMed  Google Scholar 

  55. Miermeister CP, Petersenn S, Buchfelder M et al (2015) Histological criteria for atypical pituitary adenomas - data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol Commun 3:50

    PubMed  PubMed Central  Google Scholar 

  56. Trouillas J, Roy P, Sturm N et al (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126:123–135

    PubMed  Google Scholar 

  57. Pappy AL, Savinkina A, Bicknese C et al (2019) Predictive modeling for pituitary adenomas: single center experience in 501 consecutive patients. Pituitary 22:520–531

    PubMed  Google Scholar 

  58. Kasuki L, Wildemberg LE, Neto LV et al (2013) Ki-67 is a predictor of acromegaly control with octreotide LAR independent of SSTR2 status and relates to cytokeratin pattern. Eur J Endocrinol 169:217–223

    CAS  PubMed  Google Scholar 

  59. Sarkar S, Chacko AG, Chacko G (2014) An analysis of granulation patterns, MIB-1 proliferation indices and p53 expression in 101 patients with acromegaly. Acta Neurochir 156:2221–2230

    PubMed  Google Scholar 

  60. Chinezu L, Vasiljevic A, Trouillas J et al (2017) Silent somatotroph tumour revisited from a study of 80 patients with and without acromegaly and a review of the literature. Eur J Endocrinol 176:195–201

    CAS  PubMed  Google Scholar 

  61. Thapar K, Kovacs KT, Stefaneanu L et al (1997) Antiproliferative effect of the somatostatin analogue octreotide on growth hormone-producing pituitary tumors: results of a multicenter randomized trial. Mayo Clin Proc 72:893–900

    CAS  PubMed  Google Scholar 

  62. Fan X, Olson SJ, Johnson MD (2001) Immunohistochemical localization and comparison of carboxypeptidases D, E, and Z, alpha-MSH, ACTH, and MIB-1 between human anterior and corticotroph cell “basophil invasion” of the posterior pituitary. J Histochem Cytochem 49:783–790

    CAS  PubMed  Google Scholar 

  63. Cap J, Cerman J, Nemecek S (2003) The influence of treatment with somatostatin analogues on morphology, proliferative and apoptotic activity in GH-secreting pituitary adenomas. J Clin Neurosci 10:444–448

    CAS  PubMed  Google Scholar 

  64. Selek A, Cetinarslan B, Canturk Z et al (2019) The effect of somatostatin analogues on Ki-67 levels in GH-secreting adenomas. Growth Horm IGF Res 45:1–5

    CAS  PubMed  Google Scholar 

  65. Nakashima M, Takano K, Matsuno A (2009) Analyses of factors influencing the acute effect of octreotide in growth hormone-secreting adenomas. Endocr J 56:295–304

    CAS  PubMed  Google Scholar 

  66. Iacovazzo D, Carlsen E, Lugli F et al (2016) Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol 174:241–250

    CAS  PubMed  Google Scholar 

  67. Yilmaz M, Vural E, Koc K et al (2015) Cavernous sinus invasion and effect of immunohistochemical features on remission in growth hormone secreting pituitary adenomas. Turk Neurosurg 25:380–388

    PubMed  Google Scholar 

  68. Jomori Kasuki, de Pinho L, Vieira Neto L, Armondi Wildemberg LE et al (2011) Low aryl hydrocarbon receptor-interacting protein expression is a better marker of invasiveness in somatotropinomas than Ki-67 and p53. Neuroendocrinology 94:39–48

    Google Scholar 

  69. Iuchi T, Saeki N, Osato K et al (2000) Proliferation, vascular endothelial growth factor expression and cavernous sinus invasion in growth hormone secreting pituitary adenomas. Acta Neurochir 142:1345–1351

    CAS  PubMed  Google Scholar 

  70. Fusco A, Zatelli MC, Bianchi A et al (2008) Prognostic significance of the Ki-67 labeling index in growth hormone-secreting pituitary adenomas. J Clin Endocrinol Metab 93:2746–2750

    CAS  PubMed  Google Scholar 

  71. Antunes X, Ventura N, Camilo GB (2018) Predictors of surgical outcome and early criteria of remission in acromegaly. Endocrine 60:415–422

    CAS  PubMed  Google Scholar 

  72. Alimohamadi M, Ownagh V, Mahouzi L et al (2014) The impact of immunohistochemical markers of Ki-67 and p53 on the long-term outcome of growth hormone-secreting pituitary adenomas: A cohort study. Asian J Neurosurg 9:130–136

    PubMed  PubMed Central  Google Scholar 

  73. Sarkar S, Chacko AG, Chacko G (2014) An analysis of granulation patterns, MIB-1 proliferation indices and p53 expression in 101 patients with acromegaly. Acta Neurochir (Wien) 156:2221–2230

    Google Scholar 

  74. Mohseni S, Aboeerad M, Sharifi F et al (2019) Associations of Ki-67 Labeling Index with Clinical and Paraclinical Features of Growth Hormone-Secreting Pituitary Adenomas: A Single Center Report from Iran. Int J Endocrinol Metab 17:e81983

    PubMed  PubMed Central  Google Scholar 

  75. Zuhur SS, Tanik C, Karaman Ö et al (2011) MGMT immunoexpression in growth hormone-secreting pituitary adenomas and its correlation with Ki-67 labeling index and cytokeratin distribution pattern. Endocrine 40:222–227

    CAS  PubMed  Google Scholar 

  76. Bălinişteanu B, Cîmpean AM, Ceauşu AR et al (2017) High Ki-67 expression is associated with prolactin secreting pituitary adenomas. Bosn J Basic Med Sci 17:104–108

    PubMed  PubMed Central  Google Scholar 

  77. Delgrange E, Trouillas J, Maiter D et al (1997) Sex-related difference in the growth of prolactinomas: a clinical and proliferation marker study. J Clin Endocrinol Metab 82:2102–2107

    CAS  PubMed  Google Scholar 

  78. Nishioka H, Haraoka J, Akada K (2003) Growth potential of prolactinomas in men: is it really different from women? Surg Neurol 59:386–390

    PubMed  Google Scholar 

  79. Delgrange E, Sassolas G, Perrin G (2005) Clinical and histological correlations in prolactinomas, with special reference to bromocriptine resistance. Acta Neurochir 147:751–757

    CAS  PubMed  Google Scholar 

  80. Fainstein Day P, Glerean M, Lovazzano S et al (2010) Gender differences in macroprolactinomas: study of clinical features, outcome of patients and ki-67 expression in tumor tissue. Front Horm Res 38:50–58

    PubMed  Google Scholar 

  81. Cander S, Gül ÖÖ, Ertürk E et al (2014) Prolactin levels and gender are associated with tumour behaviour in prolactinomas but Ki-67 index is not. Endokrynol Pol 65:210–216

    PubMed  Google Scholar 

  82. Song YJ, Chen MT, Lian W (2017) Surgical treatment for male prolactinoma: A retrospective study of 184 cases. Medicine 96:e5833

    PubMed  PubMed Central  Google Scholar 

  83. Jiang XB, Hu B, He DS et al (2015) Expression profiling of O (6) methylguanine-DNA-methyl transferase in prolactinomas: a correlative study of promoter methylation and pathological features in 136 cases. BMC Cancer 15:644

    PubMed  PubMed Central  Google Scholar 

  84. Losa M, Barzaghi RL, Mortini P et al (2000) Determination of the proliferation and apoptotic index in adrenocorticotropin-secreting pituitary tumors: comparison between micro- and macroadenomas. Am J Pathol 156:245–251

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Turner HE, Nagy Z, Esiri MM et al (1999) The enhanced peroxidase one step method increases sensitivity for detection of Ki-67 in pituitary tumours. J Clin Pathol 52:624–626

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Keskin FE, Ozkaya HM, Bolayirli M et al (2017) Outcomes of Primary Transsphenoidal Surgery in Cushing Disease: Experience of a Tertiary Center. World Neurosurg 106:374–381

    PubMed  Google Scholar 

  87. Liu X, Feng M, Zhang Y et al (2018) Expression of Matrix Metalloproteinase-9, Pituitary Tumor Transforming Gene, High Mobility Group A 2, and Ki-67 in Adrenocorticotropic Hormone-Secreting Pituitary Tumors and Their Association with Tumor Recurrence. World Neurosurg 113:e213–e221

    PubMed  Google Scholar 

  88. Chiloiro S, Giampietro A, Raffaelli M et al (2019) Synchronous bilateral adrenalectomy in ACTH-dependent hypercortisolism: predictors, biomarkers and outcomes. Endocrine 66:642–649

    CAS  PubMed  Google Scholar 

  89. Yamada S, Fukuhara N, Horiguchi K et al (2014) Clinicopathological characteristics and therapeutic outcomes in thyrotropin-secreting pituitary adenomas: a single-center study of 90 cases. J Neurosurg 121:1462–1473

    PubMed  Google Scholar 

  90. Căpraru OM, Gaillard C, Vasiljevic A et al (2019) Diagnosis, pathology, and management of TSH-secreting pituitary tumors. A single-center retrospective study of 20 patients from 1981 to 2014. Ann Endocrinol 80:216–224

    Google Scholar 

  91. Nishioka H, Inoshita N, Sano T et al (2012) Correlation between histological subtypes and MRI findings in clinically nonfunctioning pituitary adenomas. Endocr Pathol 23:151–156

    PubMed  Google Scholar 

  92. Baldys-Waligorska A, Wierzbicka I, Sokolowski G et al (2018) Markers of proliferation and invasiveness in somatotropinomas. Endokrynol Pol 69:182–189

    CAS  PubMed  Google Scholar 

  93. Ekramullah SM, Saitoh Y, Arita N et al (1996) The correlation of Ki-67 staining indices with tumour doubling times in regrowing non-functioning pituitary adenomas. Acta Neurochir 138:1449–1455

    CAS  PubMed  Google Scholar 

  94. Honegger J, Prettin C, Feuerhake F et al (2003) Expression of Ki-67 antigen in nonfunctioning pituitary adenomas: correlation with growth velocity and invasiveness. J Neurosurg 99:674–679

    PubMed  Google Scholar 

  95. Tanaka Y, Hongo K, Tada T et al (2003) Growth pattern and rate in residual nonfunctioning pituitary adenomas: correlations among tumor volume doubling time, patient age, and MIB-1 index. J Neurosurg 98:359–365

    PubMed  Google Scholar 

  96. Noh TW, Jeong HJ, Lee MK et al (2009) Predicting recurrence of nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 94:4406–4413

    CAS  PubMed  Google Scholar 

  97. Widhalm G, Wolfsberger S, Preusser M et al (2009) Residual nonfunctioning pituitary adenomas: prognostic value of MIB-1 labeling index for tumor progression. J Neurosurg 111:563–571

    PubMed  Google Scholar 

  98. Šteňo A, Bocko J, Rychlý B et al (2014) Nonfunctioning pituitary adenomas: association of Ki-67 and HMGA-1 labeling indices with residual tumor growth. Acta Neurochir 156:451–461

    PubMed  Google Scholar 

  99. Matoušek P, Buzrla P, Reguli Š et al (2018) Factors That Predict the Growth of Residual Nonfunctional Pituitary Adenomas: Correlations between Relapse and Cell Cycle Markers. Biomed Res Int 2018:1876290

    PubMed  PubMed Central  Google Scholar 

  100. Saeger W, Lüdecke B, Lüdecke DK (2008) Clinical tumor growth and comparison with proliferation markers in non-functioning (inactive) pituitary adenomas. Exp Clin Endocrinol Diabetes 116:80–85

    CAS  PubMed  Google Scholar 

  101. Ogawa Y, Jokura H, Niizuma K et al (2018) Mid-term prognosis of non-functioning pituitary adenomas with high proliferative potential: really an aggressive variant? J Neurooncol 137:543–549

    PubMed  Google Scholar 

  102. Hentschel SJ, McCutcheon E, Moore W et al (2003) P53 and MIB-1 immunohistochemistry as predictors of the clinical behavior of nonfunctioning pituitary adenomas. Can J Neurol Sci 30:215–219

    PubMed  Google Scholar 

  103. Mahta A, Haghpanah V, Lashkari A et al (2007) Non-functioning pituitary adenoma: immunohistochemical analysis of 85 cases. Folia Neuropathol 45:72–77

    CAS  PubMed  Google Scholar 

  104. Rishi A, Sharma MC, Sarkar C et al (2010) A clinicopathological and immunohistochemical study of clinically non-functioning pituitary adenomas: a single institutional experience. Neurol India 58:418–423

    PubMed  Google Scholar 

  105. Yao X, Gao H, Li C et al (2017) Analysis of Ki67, HMGA1, MDM2, and RB expression in nonfunctioning pituitary adenomas. J Neurooncol 132:199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Iglesias P, Arcano K, Triviño V et al (2017) Non-functioning pituitary adenoma underwent surgery: A multicenter retrospective study over the last four decades (1977-2015). Eur J Intern Med. 41:62–67

    PubMed  Google Scholar 

  107. Baldeweg SE, Pollock JR, Powell M et al (2005) A spectrum of behaviour in silent corticotroph pituitary adenomas. Br J Neurosurg 19:38–42

    CAS  PubMed  Google Scholar 

  108. Del Monte P, Foppiani L, Ruelle A et al (2007) Clinically non-functioning pituitary macroadenomas in the elderly. Aging Clin Exp Res 19:34–40

    PubMed  Google Scholar 

  109. Lubke D, Saeger W, Ludecke DK (1995) Proliferation Markers and EGF in ACTH-Secreting Adenomas and Carcinomas of the Pituitary. Endocr Pathol 6:45–55

    PubMed  Google Scholar 

  110. Thapar K, Kovacs K, Scheithauer BW et al (1996) Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38:99–106

    CAS  PubMed  Google Scholar 

  111. Gaffey TA, Scheithauer BW, Lloyd RV et al (2002) Corticotroph carcinoma of the pituitary: a clinicopathological study. Report of four cases. J Neurosurg 96:352–360

    PubMed  Google Scholar 

  112. Roncaroli F, Scheithauer BW, Young WF et al (2003) Silent corticotroph carcinoma of the adenohypophysis: a report of five cases. Am J Surg Pathol 27:477–486

    PubMed  Google Scholar 

  113. Pernicone PJ, Scheithauer BW, Sebo TJ et al (1997) Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 79:804–812

    CAS  PubMed  Google Scholar 

  114. Alshaikh OM, Asa SL, Mete O et al (2019) An Institutional Experience of Tumor Progression to Pituitary Carcinoma in a 15-Year Cohort of 1055 Consecutive Pituitary Neuroendocrine Tumors. Endocr Pathol 30:118–127

    PubMed  Google Scholar 

  115. Turner HE, Nagy Z, Esiri MM (1999) The enhanced peroxidase one step method increases sensitivity for detection of Ki-67 in pituitary tumours. J Clin Pathol 52:624–626

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wolfsberger S, Kitz K, Wunderer J et al (2004) Multiregional sampling reveals a homogenous distribution of Ki-67 proliferation rate in pituitary adenomas. Acta Neurochir 146:1323–1327

    CAS  PubMed  Google Scholar 

  117. Atkin SL, Green VL, Hipkin LJ et al (1997) A comparison of proliferation indices in human anterior pituitary adenomas using formalin-fixed tissue and in vitro cell culture. J Neurosurg 87:85–88

    CAS  PubMed  Google Scholar 

  118. Lloyd RV, Osamura RY, Kloppel G (2017) Toumors of the thyroid gland. In: WHO classification of tumors of endocrine organs, 4th edn. Lyon press, pp 65–108

  119. Rigaud C, Bogomoletz WV (1991) Apparent lack of usefulness of monoclonal antibody Ki-67 in thyroid tumour pathology. Relation to histological typing and classification. Pathol Res Pract 187:198–200

    CAS  PubMed  Google Scholar 

  120. Tan A, Etit D, Bayol U et al (2011) Comparison of proliferating cell nuclear antigen, thyroid transcription factor-1, Ki-67, p63, p53 and high-molecular weight cytokeratin expressions in papillary thyroid carcinoma, follicular carcinoma, and follicular adenoma. Ann Diagn Pathol 15:108–116

    PubMed  Google Scholar 

  121. Pujani M, Arora B, Pujani M et al (2010) Role of Ki-67 as a proliferative marker in lesions of thyroid. Indian J Cancer 47:304–307

    CAS  PubMed  Google Scholar 

  122. Basolo F, Pollina L, Fontanini G et al (1997) Apoptosis and proliferation in thyroid carcinoma: correlation with bcl-2 and p53 protein expression. Br J Cancer 75:537–541

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Horii A, Yoshida J, Sakai M et al (1999) Ki-67 positive fractions in benign and malignant thyroid tumours: application of flow cytometry. Acta Otolaryngol 119:617–620

    CAS  PubMed  Google Scholar 

  124. Yoshida A, Nakamura Y, Imada T et al (1999) Apoptosis and proliferative activity in thyroid tumors. Surg Today 29:204–208

    CAS  PubMed  Google Scholar 

  125. Saiz AD, Olvera M, Rezk S et al (2002) Immunohistochemical expression of cyclin D1, E2F-1, and Ki-67 in benign and malignant thyroid lesions. J Pathol 198:157–162

    CAS  PubMed  Google Scholar 

  126. Kazakov SP, Zabotina TN, Korotkova OV et al (2011) Comparative analysis of cells with combined apoptosis and proliferation markers in thyroid tissue specimens from patients with cancer, adenoma, and autoimmune diseases. Bull Exp Biol Med 150:453–458

    CAS  PubMed  Google Scholar 

  127. Aiad HA, Bashandy MA, Abdou AG et al (2013) Significance of AgNORs and ki-67 proliferative markers in differential diagnosis of thyroid lesions. Pathol Oncol Res 19:167–175

    CAS  PubMed  Google Scholar 

  128. Ludvíková M, Holubec L Jr, Ryska A et al (2005) Proliferative markers in diagnosis of thyroid tumors: a comparative study of MIB-1 and topoisomerase II-a immunostaining. Anticancer Res 25:1835–1840

    PubMed  Google Scholar 

  129. Tretiakova MS, Papotti M, Bussolati G et al (1999) Proliferative activity of oxyphilic (Hurthle) cells in reactive and neoplastic thyroid lesions. Endocr Pathol 10:173–179

    CAS  PubMed  Google Scholar 

  130. Müller-Höcker J (1999) Immunoreactivity of p53, Ki-67, and Bcl-2 in oncocytic adenomas and carcinomas of the thyroid gland. Hum Pathol 30:926–933

    PubMed  Google Scholar 

  131. Cör A (1999) Proliferative activity of Hürthle cell thyroid tumours. Oncology 57:17–22

    PubMed  Google Scholar 

  132. Erickson LA, Jin L, Goellner JR et al (2000) Pathologic features, proliferative activity, and cyclin D1 expression in Hurthle cell neoplasms of the thyroid. Mod Pathol 13:186–192

    CAS  PubMed  Google Scholar 

  133. Augustynowicz A, Dziecioł J, Barwijuk-Machała M et al (2004) Assessment of proliferative activity of thyroid Hürthle cell tumors using PCNA, Ki-67 and AgNOR methods. Folia Histochem Cytobiol 42:165–168

    PubMed  Google Scholar 

  134. Ding L, Jiang Y, Yang W (2019) Approach the Invasive Potential with Hurthle Cell Tumors of Thyroid. Pathol Oncol Res 25:697–701

    PubMed  Google Scholar 

  135. Saad AG, Kumar S, Ron E et al (2006) Proliferative activity of human thyroid cells in various age groups and its correlation with the risk of thyroid cancer after radiation exposure. J Clin Endocrinol Metab 91:2672–2677

    CAS  PubMed  Google Scholar 

  136. Konturek A, Barczyński M, Nowak W et al (2012) Prognostic factors in differentiated thyroid cancer–a 20-year surgical outcome study. Langenbecks Arch Surg 397:809–815

    PubMed  PubMed Central  Google Scholar 

  137. Müssig K, Wehrmann T, Dittmann H et al (2012) Expression of the proliferation marker Ki-67 associates with tumour staging and clinical outcome in differentiated thyroid carcinomas. Clin Endocrinol 77:139–145

    Google Scholar 

  138. Pulcrano M, Boukheris H, Talbot M et al (2007) Poorly differentiated follicular thyroid carcinoma: prognostic factors and relevance of histological classification. Thyroid 17:639–646

    PubMed  Google Scholar 

  139. Gnemmi V, Renaud F, Do Cao C et al (2014) Poorly differentiated thyroid carcinomas: application of the Turin proposal provides prognostic results similar to those from the assessment of high-grade features. Histopathology 64:263–273

    PubMed  Google Scholar 

  140. Su JJ, Hui LZ, Xi CJ et al (2015) Correlation analysis of ultrasonic characteristics, pathological type, and molecular markers of thyroid nodules. Genet Mol Res 14:9–20

    CAS  PubMed  Google Scholar 

  141. Mehrotra P, Gonzalez MA, Johnson SJ et al (2006) Mcm-2 and Ki-67 have limited potential in preoperative diagnosis of thyroid malignancy. Laryngoscope 116:1434–1438

    CAS  PubMed  Google Scholar 

  142. Lacoste-Collin L, d’Aure D, Bérard E et al (2014) Improvement of the cytological diagnostic accuracy of follicular thyroid lesions by the use of the Ki-67 proliferative index in addition to cytokeratin-19 and HBME-1 immunomarkers: a study of 61 cases of liquid-based FNA cytology with histological controls. Cytopathology 2014(25):160–169

    Google Scholar 

  143. Maruta J, Hashimoto H, Yamashita H et al (2015) Value of thyroid specific peroxidase and Ki-67 stains in preoperative cytology for thyroid follicular tumors. Diagn Cytopathol 43:202–209

    PubMed  Google Scholar 

  144. Mu N, Juhlin CC, Tani E et al (2018) High Ki-67 index in fine needle aspiration cytology of follicular thyroid tumors is associated with increased risk of carcinoma. Endocrine 61:293–302

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Mazeto GM, Oliveira ML, Padovani CR et al (2004) Thyroid cell proliferation in Graves’ disease. Use of MIB-1 monoclonal antibody. Acta Cytol 48:57–63

    PubMed  Google Scholar 

  146. Miyauchi A, Kudo T, Hirokawa M et al (2013) Ki-67 labeling index is a predictor of postoperative persistent disease and cancer growth and a prognostic indicator in papillary thyroid carcinoma. Eur Thyroid J 2:57–64

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Domoslawski P, Pula B, Olbromski M et al (2018) Expression of Metallothionein I/II and Ki-67 Antigen in Graves’ Disease. Anticancer Res 38:6847–6853

    CAS  PubMed  Google Scholar 

  148. Krohn K, Emmrich P, Ott N et al (1999) Increased thyroid epithelial cell proliferation in toxic thyroid nodules. Thyroid 9:241–246

    CAS  PubMed  Google Scholar 

  149. de Vasconcelos JC, Barreto IS, Matos PS et al (2018) Value of Apoptotic, Antiapoptotic, and Cell Proliferation Markers in the Treatment of Graves’ Disease. Int J Endocrinol 2018:3171280

    PubMed  PubMed Central  Google Scholar 

  150. Derwahl M, Huber G, Studer H (1989) Slow growth but intense hypertrophy of thyrocytes in long-standing Grave’s goitres. Acta Endocrinol 1989(121):389–394

    Google Scholar 

  151. Diaz-Cano SJ (2007) Kinetic topographical heterogeneity in follicular thyroid neoplasms and growth patterns. Histopathology 51:416–418

    CAS  PubMed  Google Scholar 

  152. Arif S, Patel J, Blanes A, etal (2007) Cytoarchitectural and kinetic features in the histological evaluation of follicular thyroid neoplasms. Histopathology 50:750–763

    CAS  PubMed  Google Scholar 

  153. Cho Mar K, Eimoto T, Nagaya S et al (2006) Cell proliferation marker MCM2, but not Ki67, is helpful for distinguishing between minimally invasive follicular carcinoma and follicular adenoma of the thyroid. Histopathology 48:801–807

    CAS  PubMed  Google Scholar 

  154. Ito Y, Hirokawa M, Miyauchi A et al (2016) Prognostic impact of Ki-67 labeling index in minimally invasive follicular thyroid carcinoma. Endocr J 63:913–917

    CAS  PubMed  Google Scholar 

  155. Wang W, Johansson H, Bergholm U et al (1996) Apoptosis and Expression of the Proto-Oncogenes bcl-2 and p53 and the Proliferation Factor Ki-67 in Human Medullary Thyroid Carcinoma. Endocr Pathol 7:37–45

    CAS  PubMed  Google Scholar 

  156. Mian C, Pennelli G, Barollo S et al (2011) Combined RET and Ki-67 assessment in sporadic medullary thyroid carcinoma: a useful tool for patient risk stratification. Eur J Endocrinol 164:971–976

    CAS  PubMed  Google Scholar 

  157. Frank-Raue K, Machens A, Leidig-Bruckner G et al (2013) Prevalence and clinical spectrum of nonsecretory medullary thyroid carcinoma in a series of 839 patients with sporadic medullary thyroid carcinoma. Thyroid 23:294–300

    CAS  PubMed  Google Scholar 

  158. Saglietti C, La Rosa S, Sykiotis GP et al (2019) Expression of Prox1 in Medullary Thyroid Carcinoma Is Associated with Chromogranin A and Calcitonin Expression and with Ki67 Proliferative Index, but Not with Prognosis. Endocr Pathol 30:138–145

    CAS  PubMed  Google Scholar 

  159. Pezzani R, Bertazza L, Cavedon E et al (2019) Novel Prognostic Factors Associated with Cell Cycle Control in Sporadic Medullary Thyroid Cancer Patients. Int J Endocrinol 2019:9421079

    PubMed  PubMed Central  Google Scholar 

  160. Tisell LE, Oden A, Muth A et al (2003) The Ki67 index a prognostic marker in medullary thyroid carcinoma. Br J Cancer 89:2093–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hirokawa M, Shimizu M, Manabe T et al (1995) Hyalinizing trabecular adenoma of the thyroid: its unusual cytoplasmic immunopositivity for MIB1. Pathol Int 45:399–401

    CAS  PubMed  Google Scholar 

  162. Hirokawa M, Carney JA (2000) Cell membrane and cytoplasmic staining for MIB-1 in hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol 24:575–578

    CAS  PubMed  Google Scholar 

  163. Casey MB, Sebo TJ, Carney JA (2004) Hyalinizing trabecular adenoma of the thyroid gland identification through MIB-1 staining of fine-needle aspiration biopsy smears. Am J Clin Pathol 122:506–510

    PubMed  Google Scholar 

  164. Leonardo E, Volante M, Barbareschi M et al (2007) Cell membrane reactivity of MIB-1 antibody to Ki67 in human tumors: fact or artifact? Appl Immunohistochem Mol Morphol 15:220–223

    CAS  PubMed  Google Scholar 

  165. Takada N, Hirokawa M, Ohbayashi C et al (2018) Re-evaluation of MIB-1 immunostaining for diagnosing hyalinizing trabecular tumour of the thyroid: semi-automated techniques with manual antigen retrieval are more accurate than fully automated techniques. Endocr J 65:239–244

    PubMed  Google Scholar 

  166. Kjellman P, Wallin G, Höög A et al (2003) MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid 13:371–380

    PubMed  Google Scholar 

  167. Dwivedi SS, Khandeparkar SG, Joshi AR et al (2016). Study of Immunohistochemical Markers (CK-19, CD-56, Ki-67, p53) in differentiating benign and malignant solitary thyroid nodules with special reference to papillary thyroid carcinomas. J Clin Diagn Res 10:EC14–EC19

    PubMed  PubMed Central  Google Scholar 

  168. Evans JJ, Crist HS, Durvesh S et al (2012) A comparative study of cell cycle mediator protein expression patterns in anaplastic and papillary thyroid carcinoma. Cancer Biol Ther 13:776–781

    PubMed  Google Scholar 

  169. Ivanova R, Soares P, Castro P et al (2002) Diffuse (or multinodular) follicular variant of papillary thyroid carcinoma: a clinicopathologic and immunohistochemical analysis of ten cases of an aggressive form of differentiated thyroid carcinoma. Virchows Arch 440:418–424

    PubMed  Google Scholar 

  170. Dwivedi SS, Khandeparkar SG, Joshi AR et al (2016) Study of Immunohistochemical Markers (CK-19, CD-56, Ki-67, p53) in differentiating benign and malignant solitary thyroid nodules with special reference to papillary thyroid carcinomas. J Clin Diagn Res 10:EC14–EC19

    PubMed  PubMed Central  Google Scholar 

  171. Tang W, Nakamura Y, Zuo H et al (2003) Differentiation, proliferation and retinoid receptor status of papillary carcinoma of the thyroid. Pathol Int 53:204–213

    CAS  PubMed  Google Scholar 

  172. Okayasu I, Osakabe T, Fujiwara M et al (1997) Significant correlation of telomerase activity in thyroid papillary carcinomas with cell differentiation, proliferation and extrathyroidal extension. Jpn J Cancer Res 88:965–970

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Karlsson MG, Hardell L, Hallquist A (1997) No association between immunohistochemical expression of p53, c-erbB-2, Ki-67, estrogen and progesterone receptors in female papillary thyroid cancer and ionizing radiation. Cancer Lett 120:173–177

    CAS  PubMed  Google Scholar 

  174. Genoud M, Oliva J, Alonso GF et al (2004) Proliferative activity in pregnancy-related thyroid papillary carcinoma. Endocr Pathol 15:179–182

    PubMed  Google Scholar 

  175. Siironen P, Nordling S, Louhimo J et al (2005) Immunohistochemical expression of Bcl-2, Ki-67, and p21 in patients with papillary thyroid cancer. Tumour Biol 26:50–56

    CAS  PubMed  Google Scholar 

  176. Nakayama H, Yoshida A, Nakamura Y et al (2007) Clinical significance of BRAF (V600E) mutation and Ki-67 labeling index in papillary thyroid carcinomas. Anticancer Res 2007(27):3645–3649

    Google Scholar 

  177. Matsuse M, Yabuta T, Saenko V et al (2017) TERT promoter mutations and Ki-67 labeling index as a prognostic marker of papillary thyroid carcinomas: combination of two independent factors. Sci Rep 7:41752

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Yorukoglu A, Yalcin N, Avci A et al (2015) Significance of IMP3, nucleophosmin, and Ki-67 expression in papillary thyroid carcinoma. Int J Surg Pathol 23:5–12

    PubMed  Google Scholar 

  179. Hirokawa M, Kudo T, Ota H et al (2016) Pathological characteristics of low-risk papillary thyroid microcarcinoma with progression during active surveillance. Endocr J 63:805–810

    CAS  PubMed  Google Scholar 

  180. Lim DJ, Baek KH, Lee YS et al (2007) Clinical, histopathological, and molecular characteristics of papillary thyroid microcarcinoma. Thyroid 17:883–888

    CAS  PubMed  Google Scholar 

  181. Zhou Y, Jiang HG, Lu N et al (2015) Expression of ki67 in papillary thyroid microcarcinoma and its clinical significance. Asian Pac J Cancer Prev 16:1605–1608

    PubMed  Google Scholar 

  182. Ito Y, Miyauchi A, Kakudo K et al (2010) Prognostic significance of ki-67 labeling index in papillary thyroid carcinoma. World J Surg 34:3015–3021

    PubMed  Google Scholar 

  183. Ranjbari N, Rahim F (2013) The Ki-67/MIB-1 index level and recurrence of papillary thyroid carcinoma. Med Hypotheses 80:311–314

    CAS  PubMed  Google Scholar 

  184. Lloyd RV, Ferreiro JA, Jin L et al (1997) TGFB, TGFB Receptors, Ki-67, and p27(Kip)l Expression in Papillary Thyroid Carcinomas. Endocr Pathol 8:293–300

    PubMed  Google Scholar 

  185. Chen JH, Faquin WC, Lloyd RV et al (2011) Clinicopathological and molecular characterization of nine cases of columnar cell variant of papillary thyroid carcinoma. Mod Pathol 24:739–749

    CAS  PubMed  Google Scholar 

  186. Ieni A, Barresi V, Cardia R et al (2016) The micropapillary/hobnail variant of papillary thyroid carcinoma: A review of series described in the literature compared to a series from one southern Italy pathology institution. Rev Endocr Metab Disord 17:521–527

    CAS  PubMed  Google Scholar 

  187. Tang J, Gui C, Qiu S et al (2018) The clinicopathological significance of Ki67 in papillary thyroid carcinoma: a suitable indicator? World J Surg Oncol 16:100

    PubMed  PubMed Central  Google Scholar 

  188. Huang L, Wang X, Huang X et al (2018) Diagnostic significance of CK19, galectin-3, CD56, TPO and Ki67 expression and BRAF mutation in papillary thyroid carcinoma. Oncol Lett 15:4269–4277

    PubMed  PubMed Central  Google Scholar 

  189. de Castro TP, Penha RCC, Buexm LA et al (2019) Molecular Predictors for Advanced Papillary Thyroid Carcinoma Recurrence. Front Endocrinol (Lausanne) 10:839

    Google Scholar 

  190. Maia FF, Vassallo J, Pinto GA et al (2016) Expression of Mcl-1 and Ki-67 in papillary Thyroid Carcinomas. Exp Clin Endocrinol Diabetes 124:209–214

    CAS  PubMed  Google Scholar 

  191. Radu TG, Mogoantă L, Busuioc CJ et al (2015) Histological and immunohistochemical aspects of papillary thyroid cancer. Rom J Morphol Embryol 56:789–795

    PubMed  Google Scholar 

  192. Song Q, Wang D, Lou Y et al (2011) Diagnostic significance of CK19, TG, Ki67 and galectin-3 expression for papillary thyroid carcinoma in the northeastern region of China. Diagn Pathol 6:126

    PubMed  PubMed Central  Google Scholar 

  193. Mseddi M, Ben Mansour R, Gouiia N et al (2017) A comparative study of nuclear 8-hydroxyguanosine expression in Autoimmune Thyroid Diseases and Papillary Thyroid Carcinoma and its relationship with p53, Bcl-2 and Ki-67 cancer related proteins. Adv Med Sci 62:45–51

    PubMed  Google Scholar 

  194. Ozolins A, Narbuts Z, Strumfa I et al (2010) Diagnostic utility of immunohistochemical panel in various thyroid pathologies. Langenbecks Arch Surg 395:885–891

    PubMed  Google Scholar 

  195. Giordano TJ, Chrousos GP, de Krijer RR et al (2017) Adrenal cortical carcinoma. In: Lloyd RV, Osamura RY, Kloppel G et al (eds) WHO classification of tumors of Endocrine Organs., IV edn, vol. 4. IARC, pp 163–168

  196. Schmitt A, Saremaslani P, Schmid S et al (2006) IGFII and MIB1 immunohistochemistry is helpful for the differentiation of benign from malignant adrenocortical tumours. Histopathology 49:298–307

    CAS  PubMed  Google Scholar 

  197. Weiss LM, Medeiros LJ, Vickery AL Jr (1989) Pathologic features of prognostic significance in adrenocortical carcinoma. Am J Surg Pathol 13:202–206

    CAS  PubMed  Google Scholar 

  198. Sasano H, Imatani A, Shizawa S et al (1995) Cell proliferation and apoptosis in normal and pathologic human adrenal. Mod Pathol 8:11–17

    CAS  PubMed  Google Scholar 

  199. Blanes A, Diaz-Cano SJ (2006) DNA and kinetic heterogeneity during the clonal evolution of adrenocortical proliferative lesions. Hum Pathol 37:1295–1303

    CAS  PubMed  Google Scholar 

  200. Arola J, Salmenkivi K, Liu J et al (2000) p53 and Ki67 in adrenocortical tumors. Endocr Res 26:861–865

    CAS  PubMed  Google Scholar 

  201. Morimoto R, Satoh F, Murakami O et al (2008) Immunohistochemistry of a proliferation marker Ki67/MIB1 in adrenocortical carcinomas: Ki67/MIB1 labeling index is a predictor for recurrence of adrenocortical carcinomas. Endocr J 55:49–55

    PubMed  Google Scholar 

  202. Soon PS, Gill AJ, Benn DE, etal (2009) Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify IGF2 and Ki-67 as useful in differentiating carcinomas from adenomas. Endocr Relat Cancer 16:573–583

    CAS  PubMed  Google Scholar 

  203. Beuschlein F, Weigel J, Saeger W et al (2015) Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection. J Clin Endocrinol Metab 100:841–849

    CAS  PubMed  Google Scholar 

  204. Renaudin K, Smati S, Wargny M et al (2018) Clinicopathological description of 43 oncocytic adrenocortical tumors: importance of Ki-67 in histoprognostic evaluation. Mod Pathol 31:1708–1716

    PubMed  Google Scholar 

  205. Zhang F, Zhang F, Liu Z et al (2019) Prognostic Role of Ki-67 in Adrenocortical Carcinoma After Primary Resection: A Retrospective Mono-Institutional Study. Adv Ther 36:2756–2768

    CAS  PubMed  Google Scholar 

  206. Pennanen M, Heiskanen I, Sane T et al (2015) Helsinki score-a novel model for prediction of metastases in adrenocortical carcinomas. Hum Pathol 46:404–410

    PubMed  Google Scholar 

  207. Duregon E, Cappellesso R, Maffeis V et al (2017) Validation of the prognostic role of the “Helsinki Score” in 225 cases of adrenocortical carcinoma. Hum Pathol 62:1–7

    PubMed  Google Scholar 

  208. Babińska A, Pęksa R, Wiśniewski P et al (2017) Diagnostic and prognostic role of SF1, IGF2, Ki67, p53, adiponectin, and leptin receptors in human adrenal cortical tumors. J Surg Oncol 116:427–433

    PubMed  Google Scholar 

  209. Dalino Ciaramella P, Vertemati M, Petrella D et al (2017) Analysis of histological and immunohistochemical patterns of benign and malignant adrenocortical tumors by computerized morphometry. Pathol Res Pract 213:815–823

    CAS  PubMed  Google Scholar 

  210. Scollo C, Russo M, Trovato MA et al (2016) Prognostic Factors for Adrenocortical Carcinoma Outcomes. Front Endocrinol 7:99

    Google Scholar 

  211. Wanis KN, Kanthan R (2015) Diagnostic and prognostic features in adrenocortical carcinoma: a single institution case series and review of the literature. World J Surg Oncol 13:117

    PubMed  PubMed Central  Google Scholar 

  212. Jia AH, Du HQ, Fan MH et al (2015) Clinical and pathological analysis of 116 cases of adult adrenal cortical adenoma and literature review. Onco Targets Ther 8:1251–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Nowak KM, Samsel R, Cichocki A et al (2018) Prognostic factors in adrenocortical carcinoma: data from a large Polish series. Pol Arch Intern Med 128:371–378

    PubMed  Google Scholar 

  214. Mete O, Gucer H, Kefeli M et al (2018) Diagnostic and Prognostic Biomarkers of Adrenal Cortical Carcinoma. Am J Surg Pathol 42:201–213

    PubMed  Google Scholar 

  215. Şişman P, Şahin AB, Peynirci H et al (2017) Adrenocortical carcinoma: Single center experience. Turk J Urol 43:462–469

    PubMed  PubMed Central  Google Scholar 

  216. Kostiainen I, Hakaste L, Kejo P et al (2019) Adrenocortical carcinoma: presentation and outcome of a contemporary patient series. Endocrine 65:166–174

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Aporowicz M, Czopnik P, Kubicka E et al (2019) Minichromosome Maintenance Proteins MCM-3, MCM-5, MCM-7, and Ki-67 as Proliferative Markers in Adrenocortical Tumors. Anticancer Res 39:1151–1159

    CAS  PubMed  Google Scholar 

  218. Zlatibor L, Paunovic I, Zivaljevic V et al (2020) Prognostic significance of immunohistochemical markers in adrenocortical carcinoma. Acta Chir Belg 120:23–29

    PubMed  Google Scholar 

  219. Szajerka A, Dziegiel P, Szajerka T et al (2008) Immunohistochemical evaluation of metallothionein, Mcm-2 and Ki-67 antigen expression in tumors of the adrenal cortex. Anticancer Res 28:2959–2965

    PubMed  Google Scholar 

  220. Babinska A, Sworczak K, Wisniewski P et al (2008) The role of immunohistochemistry in histopathological diagnostics of clinically “silent” incidentally detected adrenal masses. Exp Clin Endocrinol Diabetes 116:246–251

    CAS  PubMed  Google Scholar 

  221. Duregon E, Molinaro L, Volante M et al (2014) Comparative diagnostic and prognostic performances of the hematoxylin-eosin and phospho-histone H3 mitotic count and Ki-67 index in adrenocortical carcinoma. Mod Pathol 27:1246–1254

    CAS  PubMed  Google Scholar 

  222. Yamazaki Y, Nakamura Y, Shibahara Y et al (2016) Comparison of the methods for measuring the Ki-67 labeling index in adrenocortical carcinoma: manual versus digital image analysis. Hum Pathol 53:41–50

    CAS  PubMed  Google Scholar 

  223. Papathomas TG, Pucci E, Giordano TJ et al (2016) An International Ki67 Reproducibility Study in Adrenal Cortical Carcinoma. Am J Surg Pathol 40:569–576

    PubMed  Google Scholar 

  224. Lu H, Papathomas TG, van Zessen D et al (2014) Automated Selection of Hotspots (ASH): enhanced automated segmentation and adaptive step finding for Ki67 hotspot detection in adrenal cortical cancer. Diagn Pathol 9:216

    PubMed  PubMed Central  Google Scholar 

  225. Duregon E, Volante M, Bollito E et al (2015) Pitfalls in the diagnosis of adrenocortical tumors: a lesson from 300 consultation cases. Hum Pathol 46:1799–1807

    PubMed  Google Scholar 

  226. Kwok GTY, Zhao JT, Glover AR et al (2019) Treatment and management of adrenal cancer in a specialized Australian endocrine surgical unit: approaches, outcomes and lessons learnt. ANZ J Surg 89:48–52

    PubMed  Google Scholar 

  227. Fassnacht M, Dekkers OM, Else T et al (2018) European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 179:G1–G46

    CAS  PubMed  Google Scholar 

  228. Tischler AS, de Krijer RR, Gill A et al (2017). Phaeocromocytoma. In: Lloyd RV, Osamura RY, Kloppel G et al. WHO Classification of tumors of Endocrine Organs. IV edition, IARC; 5: 183-189

  229. Kimura N, Watanabe T, Noshiro T et al (2005) Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extra-adrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol 16:23–32

    PubMed  Google Scholar 

  230. Kimura N, Takayanagi R, Takizawa N et al (2014) Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr Relat Cancer 21:405–414

    PubMed  Google Scholar 

  231. Thompson LD (2002) Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 26:551–566

    PubMed  Google Scholar 

  232. Ocal I, Avci A, Cakalagaoglu F et al (2014) Lack of correlations among histopathological parameters, Ki-67 proliferation index and prognosis in pheochromocytoma patients. Asian Pac J Cancer Prev 15:1751–1755

    PubMed  Google Scholar 

  233. Lupşan N, Resiga L, Boşca AB et al (2016) Diagnostic reevaluation of 17 cases of pheochromocytoma - a retrospective study. Rom J Morphol Embryol 2016(57):651–661

    Google Scholar 

  234. Clarke MR, Weyant RJ, Watson CG et al (1998) Prognostic markers in pheochromocytoma. Hum Pathol 29:522–526

    CAS  PubMed  Google Scholar 

  235. Ohji H, Sasagawa I, Iciyanagi O et al (2001) Tumour angiogenesis and Ki-67 expression in phaeochromocytoma. BJU Int 87:381–385

    CAS  PubMed  Google Scholar 

  236. Salmenkivi K, Heikkilä P, Haglund C et al (2003) Lack of histologically suspicious features, proliferative activity, and p53 expression suggests benign diagnosis in phaeochromocytomas. Histopathology 43:62–71

    CAS  PubMed  Google Scholar 

  237. August C, August K, Schroeder S et al (2004) CGH and CD 44/MIB-1 immunohistochemistry are helpful to distinguish metastasized from nonmetastasized sporadic pheochromocytomas. Mod Pathol 17:1119–1128

    CAS  PubMed  Google Scholar 

  238. Tavangar SM, Shojaee A, Moradi Tabriz H et al (2010) Immunohistochemical expression of Ki67, c-erbB-2, and c-kit antigens in benign and malignant pheochromocytoma. Pathol Res Pract 206:305–309

    CAS  PubMed  Google Scholar 

  239. de Wailly P, Oragano L, Radé F et al (2012) Malignant pheochromocytoma: new malignancy criteria. Langenbecks Arch Surg 397:239–246

    PubMed  Google Scholar 

  240. Strong VE, Kennedy T, Al-Ahmadie H et al (2008) Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery 143:759–768

    PubMed  Google Scholar 

  241. Kulkarni MM, Khandeparkar SG, Deshmukh SD et al (2016) Risk stratification in paragangliomas with PASS (Pheochromocytoma of the Adrenal Gland Scaled Score) and immunohistochemical Markers. J Clin Diagn Res 10(9):EC01–EC04

    PubMed  PubMed Central  Google Scholar 

  242. Pierre C, Agopiantz M, Brunaud L et al (2019) COPPS, a composite score integrating pathological features, PS100 and SDHB losses, predicts the risk of metastasis and progression-free survival in pheochromocytomas/paragangliomas. Virchows Arch 474:721–734

    CAS  PubMed  Google Scholar 

  243. Lin M, Wong V, Yap J et al (2013) FDG PET in the evaluation of phaeochromocytoma: a correlative study with MIBG scintigraphy and Ki-67 proliferative index. Clin Imaging 37:1084–1088

    PubMed  Google Scholar 

  244. Guo D, Zhao X, Wang A et al (2019) PD-L1 expression and association with malignant behavior in pheochromocytomas/paragangliomas. Hum Pathol 86:155–162

    CAS  PubMed  Google Scholar 

  245. Gjuric M, Völker U, Katalinic A et al (1997) Prognostic Factors Including Proliferation Markers Ki-67, bax, and bcl-2 in Temporal Bone Paraganglioma. Skull Base Surg 7:175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Welkoborsky HJ, Gosepath J, Jacob R et al (2000) Biologic characteristics of paragangliomas of the nasal cavity and paranasal sinuses. Am J Rhinol 14:419–426

    CAS  PubMed  Google Scholar 

  247. Artico M, De Vincentiis M, Ionta B, etal (2012) Immunohistochemical profile of neurotrophins and MIB-1 in jugulotympanic paragangliomas: prognostic value and review of the literature. Int J Immunopathol Pharmacol 25:183–191

    CAS  PubMed  Google Scholar 

  248. Ji XK, Zheng XW, Wu XL et al (2017) Diagnosis and surgical treatment of retroperitoneal paraganglioma: A single-institution experience of 34 cases. Oncol Lett 14:2268–2280

    PubMed  PubMed Central  Google Scholar 

  249. Assadipour Y, Sadowski SM, Alimchandani M et al (2017) SDHB mutation status and tumor size but not tumor grade are important predictors of clinical outcome in pheochromocytoma and abdominal paraganglioma. Surgery 161:230–239

    PubMed  Google Scholar 

  250. Falhammar H, Kjellman M, Calissendorff J (2018) Treatment and outcomes in pheochromocytomas and paragangliomas: a study of 110 cases from a single center. Endocrine 62:566–575

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Pávai Z, Orosz Z, Horváth E et al (2001) Immunohistochemical features of paragangliomas. J Cell Mol Med 5:311–316

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was carried out within the network of the project RIS 3-RARE.PLAT.NET.

Author information

Authors and Affiliations

Authors

Contributions

Work and concept were initiated by EG and MDBDC; literature search and data interpretation were performed by EG and EdA and MDBDC. The manuscript was written by EG and EdA and AC, PC and MDBDC critically reviewed the manuscript.

Corresponding author

Correspondence to E. Guadagno.

Ethics declarations

Conflict of interest

All authors stated that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

No informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guadagno, E., D’Avella, E., Cappabianca, P. et al. Ki67 in endocrine neoplasms: to count or not to count, this is the question! A systematic review from the English language literature. J Endocrinol Invest 43, 1429–1445 (2020). https://doi.org/10.1007/s40618-020-01275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01275-9

Keywords

Navigation