Skip to main content
Log in

Analysis of pig’s coronary arterial blood flow with detailed anatomical data

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Blood flow to perfuse the muscle cells of the heart is distributed by the capillary blood vessels via the coronary arterial tree. Because the branching pattern and vascular geometry of the coronary vessels in the ventricles and atria are nonuniform, the flow in all of the coronary capillary blood vessels is not the same. This nonuniformity of perfusion has obvious physiological meaning, and must depend on the anatomy and branching pattern of the arterial tree. In this study, the statistical distribution of blood pressure, blood flow, and blood volume in all branches of the coronary arterial tree is determined based on the anatomical branching pattern of the coronary arterial tree and the statistical data on the lengths and diameters of the blood vessels. Spatial nonuniformity of the flow field is represented by dispersions of various quantities (SD/mean) that are determined as functions of the order numbers of the blood vessels. In the determination, we used a new, complete set of statistical data on the branching pattern and vascular geometry of the coronary arterial trees. We wrote hemodynamic equations for flow in every vessel and every node of a circuit, and solved them numerically. The results of two circuits are compared: oneasymmetric model satisfies all anatomical data (including the meanconnectivity matrix) and the other, asymmetric model, satisfies all mean anatomical data except the connectivity matrix. It was found that the mean longitudinal pressure drop profile as functions of the vessel order numbers are similar in both models, but the asymmetric model yields interesting dispersion profiles of blood pressure and blood flow. Mathematical modeling of the anatomy and hemodynamics is illustrated with discussions on its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity.Circ. Res. 65:578–590, 1989.

    PubMed  CAS  Google Scholar 

  2. Chen, I. H. A mathematical representation for vessel networks. II.J. Theor. Biol. 104:647–654, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Chilian, W. M., C. L. Eastham, and M. L. Marcus. Microvascular distribution of coronary vascular resistance in beating left ventricle.Am. J. Physiol. 251:H779-H788, 1986.

    PubMed  CAS  Google Scholar 

  4. Chilian, W. M., S. M. Layne, E. C. Klausner, C. L. Eastham, and M. L. Marcus. Redistribution of coronary microvascular resistance produced by dipyridamole.Am. J. Physiol. 256:H383-H390, 1989.

    PubMed  CAS  Google Scholar 

  5. Fenton, B. M., and B. W. Zweifach. Microcirculatory model relating geometrical variation to changes in pressure and flow rate.Ann. Biomed. Eng. 9:303–321, 1981.

    Article  Google Scholar 

  6. Fung, Y. C. Biodynamics: Circulation. New York: Springer-Verlag, 1984, pp. 10–12.

    Google Scholar 

  7. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth, New York: Springer-Verlag, 1990, pp. 229–234.

    Google Scholar 

  8. Gross, J. F., M. Intaglietta, and B. W. Zweifach. Network model of pulsatile hemodynamics in the microcirculation of the rabbit omentum.Am. J. Physiol. 226:1117–1123, 1974.

    PubMed  CAS  Google Scholar 

  9. Haworth, S. T., J. H. Linehan, T. A. Bronikowski, and C. A. Dawson. A hemodynamic model representation of the dog lung.J. Appl. Physiol. 70:15–26, 1991.

    PubMed  CAS  Google Scholar 

  10. Hoffman, J. I. Heterogeneity of myocardial blood flow.Basic Res. Cardiol. 90:103–111, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman, J. I., and J. A. Spaan. Pressure-flow relations in the coronary circulation.Physiol. Rev. 70:331–390, 1990.

    PubMed  CAS  Google Scholar 

  12. Hudetz, A. G., K. A. Conger, J. H. Halsey, M. Pal, O. Dohan, and A. G. B. Kovach. Pressure distribution in the pial arterial system of rats based on morphometric data and mathematical models.J. Cereb. Blood Flow Metab. 7:342–355, 1987.

    PubMed  CAS  Google Scholar 

  13. Intaglietta, D., R. Richardson, and W. R. Tompkins. Blood pressure, flow, and elastic properties in microvessels of cat omentum.Am. J. Physiol. 221:922–928, 1971.

    PubMed  CAS  Google Scholar 

  14. Kanatsuka, H., K. G. Lamping, C. L. Eastham, M. L. Marcus, and K. C. Dellsperger. Coronary microvascular resistance in hypertensive cats.Circ. Res. 68:726–733, 1991.

    PubMed  CAS  Google Scholar 

  15. Kassab, G. S. Morphometry of the Coronary Arteries in the Pig. La Jolla: University of California, San Diego, Ph.D. Thesis, 1990.

    Google Scholar 

  16. Kassab, G. S., and Y. C. Fung. Topology and dimensions of pig coronary capillary network.Am. J. Physiol. 267 (Heat Circ. Physiol. 36):H319-H325, 1994.

    PubMed  CAS  Google Scholar 

  17. Kassab, G. S., K. Imoto, F. C. White, C. A. Rider, Y. C. Fung, and C. M. Bloor. Coronary arterial tree remodeling in right ventricular hypertrophy.Am. J. Physiol. 265(Part 2):H366-H375, 1993.

    PubMed  CAS  Google Scholar 

  18. Kassab, G. S., D. H. Lin, and Y. C. Fung. Morphometry of pig coronary venous system.Am. J. Physiol. 267 (Heart Circ. Physiol. 36):H2100-H2113, 1994.

    PubMed  CAS  Google Scholar 

  19. Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of pig coronary arterial trees.Am. J. Physiol. 265(Heart Circ. Physiol. 34):H350-H365, 1993.

    PubMed  CAS  Google Scholar 

  20. Lee, J. S., and S. Nellis. Modeling study on the distribution of flow and volume in the microcirculation of cat mesentery.Ann. Biomed. Eng. 2:206–216, 1974.

    Article  Google Scholar 

  21. Levitt, D. G., B. Sircar, N. Lifson, and E. J. Lender. Model for mucosal circulation of rabbit small intestine.Am. J. Physiol. 237:E373-E382, 1979.

    PubMed  CAS  Google Scholar 

  22. Lipowsky, H. H., and B. W. Zweifach. Network analysis of microcirculation of cat mesentery.Microvasc. Res. 7:73–83, 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Mayrovitz, H. N., M. P. Wiedeman, and A. Noordergraaf. Analytical characterization of mcirovascular resistance distribution.Bull. Math. Biol. 38:71–82, 1976.

    PubMed  CAS  Google Scholar 

  24. Nellis, S. H., K. L. Carroll, and M. Eggleston. Measurement of phasic velocities in vessels of intact freely beating hearts.Am. J. Physiol. 260 (Heart Circ. Physiol. 29):H1264-H1275, 1991.

    PubMed  CAS  Google Scholar 

  25. Popel, A. S. A model of pressure and flow distribution in branching networks.J. Appl. Mech. 47:247–253, 1980.

    Article  Google Scholar 

  26. Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation.Circ. Res. 67:826–834, 1990.

    PubMed  CAS  Google Scholar 

  27. Schmid-Schoenbein, G. W. A theory of blood flow in skeletal muscle.J. Biomech. Eng. Trans. ASME 110:20–26, 1986.

    Article  Google Scholar 

  28. Skalak, T. C. A Mathematical Hemodynamic Network Model of the Microcirculation in Skeletal Muscle, Using Measured Blood Vessel Distensibility and Topology. University of California, San Diego (University Microfilms International No. DA8418303), Ph.D. Thesis, 1984.

    Google Scholar 

  29. Spaan, J. A. Coronary Blood Flow: Mechanics, Distribution, and Control. Boston: Kluwer Academic, 1991.

    Google Scholar 

  30. Tillmanns, H., M. Steinhausen, H. Leinberger, H. Thederan, and W. Kubler. Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats.Circ. Res. 49:1202–1211, 1981.

    PubMed  CAS  Google Scholar 

  31. VanBavel, E., and J. A. Spaan. Branching patterns in the porcine coronary arterial tree: estimation of flow heterogeneity.Circ. Res. 71:1200–1212, 1992.

    PubMed  CAS  Google Scholar 

  32. Zhuang, F. Y., Y. C. Fung, and R. T. Yen. Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data.J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 55:1341–1448, 1983.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassab, G.S., Berkley, J. & Fung, YC.B. Analysis of pig’s coronary arterial blood flow with detailed anatomical data. Ann Biomed Eng 25, 204–217 (1997). https://doi.org/10.1007/BF02738551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738551

Keywords

Navigation