Skip to main content
Log in

Quantifying the geometry of micropipets

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Accurate knowledge of the internal diameter (id) of micropipet tips is important, because the ability to study many different aspects of biological membranes is a very sensitive function of tip size. The authors examined two methods used to characterize pipet tips: the digital manometric method (DMM) and bubble number method (BNM). For DMM, the authors compared the ability of Laplace's equation (model I) and a modified form of his equation (model II), which accounts for adhesion between the test fluid and glass Pressure measurements were made with a digital manometer, and ids at the tip were measured using scanning electron microscopy (SEM). The micropipet tips showed a slight asymmetry in id, with a approx 5% difference between maximum and minimum id. On average, model I overestimates the largest id by 2%. Model II overestimates the smaller id by 2%. For micropipet tips ranging from 1.00 to 5.00 μm, the corresponding uncertainties range from 20 to 100 nm. Making the normally hydrophilic glass surface hydrophobic strongly reduced threshold pressures when tested in water, but not 100% methanol. Compared to BNM, DMM was insensitive to changes in atmospheric pressure: BNM can be corrected for changes in atmospheric pressure. Convergence angle(s) can be determined from measurements of the pressure and the axial distance of the meniscus from the tip. The accuracy and precision of digital manometry approaches that of SEM. DMM should be particularly useful in selecting, micropipets for patch clamp studies of small vesicles (<10 μm), and may enable systematic selection of micropipets for many other experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, E. and Needham, M. (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions.J. Phys. Chem. 91, 4219–4228.

    Article  CAS  Google Scholar 

  2. Sokabe, M., Nunogaki, K., Naruse, K., and Soga, H. (1993) Mechanics of patch clamped and intact cell-membranes in relation to SA channel activation.Jpn. J. Physiol. 43(Suppl 1), S71-S78.

    Google Scholar 

  3. Oliva, C., Cohen, I. S., and Mathias, R. T. (1988) Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration.Biophys. J. 54, 791–799.

    Article  PubMed  CAS  Google Scholar 

  4. Snell, F. (1969). Some properties of fine-tipped pipette microelectrodes, inGlass Microelectrodes (Lavallee, M., Schanne, O. F., and Hebert, N. C. eds.), John Wiley, New York, pp. 111–123.

    Google Scholar 

  5. Auerbach, A. (1991) Single-channel dose-response studies in single, cell-attached patches.Biophys. J. 60, 660–670.

    PubMed  CAS  Google Scholar 

  6. Corey, D. P. and Stevens, C. F. (1983) Science and technology of electrodes, inSingle-Channel Recording (Sakmann, B. and Neher, E., eds.). Plenum Press, New York, pp. 53–68.

    Google Scholar 

  7. Mittman, S., Flaming, D. G., Copenhagen, D. R., and Belgum, J. H. (1987) Bubble pressure 0 measurement of micropipette tip outer diameter.J. Neurosci. Methods 22, 161–166.

    Article  PubMed  CAS  Google Scholar 

  8. Martin, D. K. and Cook, D. I. (1990) A direct-reading device for measurement of patch-clamp micropipette tip diameters.Pflúgers Arch. 417, 255–258.

    Article  PubMed  CAS  Google Scholar 

  9. Hagag, N., Violoa, M., Lane, B. and Randolph, J. K. (1990) Precise, easy measurement of glass pipette tips for microinjection or electrophysiology.Bio Techniques 9, 401–406.

    CAS  Google Scholar 

  10. Bowman, C. L. and Ruknudin, A. (1993). Accuracy of the bubble pressure method (BPM) in estimating micropipette diameter.Biophys. J. 64, A338.

    Google Scholar 

  11. Bowman, C. L., Ding, J. P., Sachs, F., and sokabe, M. (1992) Mechanostransducing ion channels in astrocytes.Brain Res. 584, 272–286.

    Article  PubMed  CAS  Google Scholar 

  12. Bowman, C. L. (1998) Quantifying the cleanliness of glass capillaries.Cell Biochem. Biophys. 29, 203–223.

    Article  PubMed  CAS  Google Scholar 

  13. Adamson, A. W. (1990)Physical Chemistry of Surfaces, 5th ed. John Wiley, New York.

    Google Scholar 

  14. Christenson, H. K. (1985). Capillary condensation in systems of immiscible liquids.J. Colloid and Interface Sci. 104, 234–249.

    Article  CAS  Google Scholar 

  15. Fisher, L. R. and Israelachivili, J. N. (1981) Direct measurement of the effect of meniscus forces on adhesion: a study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces.Colloids Surfaces 3, 303–319.

    Article  CAS  Google Scholar 

  16. Sugden, S. (1922). The determination of surface tension from the maximum pressure in bubbles.J. Chem. Soc. 121, 858–866.

    CAS  Google Scholar 

  17. Sugden, S. (1924) The determination of surface tension from the maximum pressure in bubbles. Part II.J. Chem. Soc. 125, 27–31.

    CAS  Google Scholar 

  18. Bevington, P. R. and Robinson, D. K. (1992)Data Reduction and Error Analysis for the Physical Sciences, 2nd ed., McGraw-Hill, p. 41.

  19. Lide, D. R. and Frederikse, P. P. R., eds.Handbook of Chemistry and Physics, 78th ed., CRC, New York, p. 6–135.

  20. Handbook of Chemistry and Physics, 44th edition (Hodgman, C. D., Weast, R. C., Shankland, R. S., eds.) Chemical Rubber, Cleveland, OH p. 2238.

  21. Handbook of Chemistry and Physics (1997), 78th ed., Lide, D. R. and Frederikse, P. P. R., eds., CRC, New York, p. 14–9.

    Google Scholar 

  22. Pauling, L. (1970),General Chemistry. Dover, New York, p. 335.

    Google Scholar 

  23. Handbook of Chemistry and Physics, Lide, D. R. and Frederikse, P. P. R., eds., 78th ed., CRC, New York, p. 14–16.

  24. NAVSTAR Operations Web Site: http://tycho. usno.navy.mil/gpsinfo.html

  25. Inoué, S. and Spring, K. R. (1997).Video Microscopy, 2nd ed., Plenum, New York, p. 31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Bowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, C.L., Ruknudin, A.M. Quantifying the geometry of micropipets. Cell Biochem Biophys 31, 185–206 (1999). https://doi.org/10.1007/BF02738172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738172

Index Entries

Navigation