Skip to main content
Log in

Analysis of octopine left border-directed DNA transfer fromAgrobacterium to plants

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

We constructed a binary plasmid, pVR30, with a neomycin phosphotransferase II (nptII) plant expression cassette flanked by a pTiA6 left border on its right and a pTiA6 right border on its left. This plasmid was used to study transfer of DNA to plants from a left border in the presence of a right border. Infection of tobacco leaf discs with a wild type octopine strain ofAgrobacterium tumefaciens harbouring the binary plasmid resulted in the generation of kanamycin resistant calli at 18 to 26% frequency. Southern hybridization analysis of DNA isolated from eight transformed lines to different probes indicated that left border could mediate DNA transfer to plants in the presence of a right border in cis. Our results also suggest that transfer events corresponding to transfer of T- centre DNA of octopine Ti plasmid pTiA6 do occur. We have shown the relevance of left border- initiated T- DNA transfer by specifically selecting for such events and have confirmed it by Southern hybridization analysis. We also found that a border could be skipped in a few T- DNA transsfer events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker R F, Idler K B, Thompson D V and Kemp J D 1983 Nucleotide sequence of the T-DNA region from theA. tumefaciens octopine TiplasmidpTi 15955;Plant Mol. Biol. 2 335–350

    Article  CAS  Google Scholar 

  • Birnboim H C and Doly J 1979 A rapid alkaline extraction procedure for screening recombinant plasmid DNA;Nucleic Acids Res. 7 1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Chen W and Kuo T 1983 A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA;Nucleic Acids Res. 21 2260

    Article  Google Scholar 

  • Chilton M-D, Currier T C, Farrand S K, Bendich A J, Gordon M P and Nester E W 1974Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors;Proc. Natl. Acad. Sci. USA 71 3672–3676

    Article  PubMed  CAS  Google Scholar 

  • Czako M, Kanevsky I Fand Marton L 1995 “Long transfer”: Frequent integration of the entire binary vector as one fragment inNicotiana duringAgrobacterium-mediated gene transfer;Plant. Physiol. 1088 799

    Google Scholar 

  • Durrenberger F, Crameri A, Hohn B and Koukolikova-Nicola Z 1989 Covalently bound virD2 protein ofAgrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation;Proc. Natl Acad. Sci. USA 86 9154–9158

    Article  PubMed  CAS  Google Scholar 

  • Dagert M and Ehrlich S D 1979 Prolonged incubation in calcium chloride improves the competence ofEscherichia coli cells;Gene 6 23–28

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D and Helinski D R 1980 Broad host range DNA cloning system for Gram-negative bacteria: Construction of gene bank ofRhizobium meliloti;Proc. Natl Acad. Sci. USA 77 7347–7351

    Article  PubMed  CAS  Google Scholar 

  • Holsters M, Villarroel R, Gielen J, Seurinck J, De Greve H, Van Montagu M and Schell J 1983 An analysis of the boundaries of the octopine TL-DNA in tumors induced byAgrobacterium tumefaciens;Mol. Gen. Genet. 190 35–41

    Article  CAS  Google Scholar 

  • Jen G C and Chilton M-D 1986a The right border region of pTiT37 T-DNA is intrinsically more active than the left border region in promoting T-DNA transformation;Proc. Natl Acad. Sci. USA 83 3895–3899

    Article  PubMed  CAS  Google Scholar 

  • Jen G C and Chilton M-D 1986b Activity of T-DNA borders in plant cell transformation by mini-T plasmids;J. Bacteriol. 166 49 1–499

    Google Scholar 

  • Joos H, Timmerman B, Van Montagu M and Schell J 1983 Genetic analysis of transfer and stabilization ofAgrobacterium DNA in plant cells;EMBO J. 2 2151–2160

    PubMed  CAS  Google Scholar 

  • Kwok W W, Nester E W and Gordon M P 1985 Unusual plasmid DNA organization in an octopine crown gall tumor;Nucleic Acids Res. 13 459–471

    Article  PubMed  CAS  Google Scholar 

  • Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernalsteens J P and Schell J 1980 Internal organization, boundaries and integration of the Ti plasmid DNA in nopaline crown gall tumours;J. Mol. Biol. 144 353–376

    Article  PubMed  CAS  Google Scholar 

  • Martineau B, Voelker T A and Sanders R A 1994 On defining T-DNA;Plant Cell 6 1032–1033

    Article  PubMed  Google Scholar 

  • Miller J H 1972Experiments in molecular genetics (New York: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Murashige T and Skoog F 1962 A revised method for rapid growth and bioassays with tobacco tissue cultures;Physiol. Plant 15 473–497

    Article  CAS  Google Scholar 

  • Ooms G, Bakker A, Molendijk L, Wullems G J, Gordon M P, Nester E W and Schilperoort R A 1982 T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues ofNicotiana tabacum;Cell 30 589–597

    Article  PubMed  CAS  Google Scholar 

  • Peralta E G and Ream L W 1985 T-DNA border sequences required for crown gall tumorigenesis;Proc., Natl Acad. Sic. USA 82 5112–5116

    Article  CAS  Google Scholar 

  • Peralta E G, Hellmiss R and Ream L W 1986 Overdrive, a T-DNA transmission enhancer on theA. tumefaciens tumour-inducing plasmid;EMBO J. 5 1137–1142

    PubMed  CAS  Google Scholar 

  • Ramanathan V and Veluthambi K 1995 Transfer of non-T-DNA portions of theAgrobacterium Ti plasmid pTiA6 from the left terminus of TL-DNA;Plant Mol Biol 28 1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Rogers S O and Bendich A J 1988 Extraction of DNA from plant tissues; inPlant molecular biology manual (eds) S B Gelvin and R A Schilperoort (Dordrecht: Kluwer Academic Publishers) pp A6 1–11

    Google Scholar 

  • Rubin R A 1986 Genetic studies on the role of octopine T-DNA border regions in crown gall tumor formation;Mol Gen. Genet 202 312–320

    Article  CAS  Google Scholar 

  • Shaw C H, Watson M D, Carter G H and Shaw C H 1984 The right hand copy of the nopaline Ti plasmid 25 bp repeat is required for tumour formation;Nucleic Acids Res. 12 6031–6041

    Article  PubMed  CAS  Google Scholar 

  • Simpson R B, O’Hara P J, Kwok W W, Montoya A L, Lichtenstein C, Gordon M P and Nester E W 1982 DNA from the A6S/2 crown gall tumor contains scrambled Ti plasmid sequences near its junctions with the plant DNA;Cell 29 1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Slightom J L, Jouanin L, Leach F, Drong R F and Tepfer D 1985 Isolation and identification of TL-DNA/plant junctions inConvolvulus arvensis transformed byAgrobacterium rhizogenes strain A4;EMBO J. 4 3069–3077

    PubMed  CAS  Google Scholar 

  • Stachel S E, Timmerman B and Zambryski P 1987 Activation ofAgrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5′vir D products;EMBO J. 6 857–863

    PubMed  CAS  Google Scholar 

  • Thomashow M F, Nutter R, Montoya A L, Gordon M P and Nester E W 1980 Integration and organization of Ti plasmid sequences in crown gall tumors;Cell 19 729–739

    Article  PubMed  CAS  Google Scholar 

  • van Haaren M J J, Pronk J T, Schilperoort R A and Hooykaas P J J 1987 Functional analysis of theAgrobacterium tumefaciens octopine Ti plasmid left and right T-region border fragments;Plant Mol. Biol. 8 95–104

    Article  Google Scholar 

  • van Haaren M J J, Sedee N J A, Krul M, Schilperoort R A and Hooykaas P J J 1988 Function of heterologous and pseudoborder repeats in T-region transfer via the octopine virulence system ofAgrobacterium tumefaciens;Plant Mol Biol 11 773–781

    Article  Google Scholar 

  • Veluthambi K, Ream L W and Gelvin S B 1988 Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid ofAgrobacterium;J. Bacteriol 170 1523–1532

    PubMed  CAS  Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M and Zambryski P 1984 Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer fromAgrobacterium to the plant genome;Cell 38 455–462

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Genetello C, Van Montagu M and Zambryski P 1987 Sequence context of the T-DNA border repeat element determines its relative activity during T-DNA transfer to plant cells;Mol Gen. Genet. 210 338–346

    Article  CAS  Google Scholar 

  • Yadav N S, Vanderleyden J, Bennet D R, Barnes W M and Chilton M-D 1982 Short direct repeats flank the T-DNA on a nopaline Ti plasmid;Proc. Natl Acad. Sci USA 79 6322–6326

    Article  PubMed  CAS  Google Scholar 

  • Zambryski P 1988 Basic processes underlyingAgrobacterium-mediated DNA transfer to plant cells;Annu. Rev, Genet. 22 1–30

    Article  CAS  Google Scholar 

  • Zambryski P, Depicker A, Kruger K and Goodman H 1982 Tumor induction byAgrobacterium tumefaciens: analysis of the boundaries of T-DNA;J. Mol App. Genet. 1 361–370

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Veluthambi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanathan, V., Veluthambi, K. Analysis of octopine left border-directed DNA transfer fromAgrobacterium to plants. J Biosci 21, 45–56 (1996). https://doi.org/10.1007/BF02716812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02716812

Keywords

Navigation