Skip to main content
Log in

Heat induced stress proteins and the concept of molecular chaperones

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Heat stress proteins can be assigned to eleven protein families conserved among bacteria, plants and animals. Most of them aid other proteins to maintain or regain their native conformation by stabilizing partially unfolded states. Hence, they are called molecular chaperones. Experimental data indicate that many of them form heterooligomeric complexes, so-called chaperone machines, interacting with each other to generate a network for maturation, assembly and intracellular targeting of proteins. In this review we summarize the essential information on the structure and function of chaperone and chaperone complexes. In addition we present a compilation ofin vivo andin vivo test systems used in the preceding ten years of chaperone research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azem A, Diamant S, Kessel M, Weiss C and Goloubinoff P 1995 The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer;Proc. Natl. Acad. Sci. USA 92 12021–12025

    Article  CAS  PubMed  Google Scholar 

  • Becker J and Craig E A 1994 Heat-shock proteins as molecular chaperones;Eur. J. Biochem. 219 11–23

    Article  CAS  PubMed  Google Scholar 

  • Bose S, Weikl T, Bügl H and Buchner J 1996 Chaperone function of HSP90-associated proteins;Science 247 1715–1717

    Article  Google Scholar 

  • Boston R S, Viitanen P V and Vierling E 1996 Molecular chaperones and protein folding in plants;Plant Mol. Biol. 32 191–222

    Article  CAS  PubMed  Google Scholar 

  • Brodsky J L 1996 Post-translational protein translocation: not all Hsc70 are treated equal;Trends Biochem. Sci. 21 122–126

    Article  CAS  PubMed  Google Scholar 

  • Brunshier R, Danner M and Seckler R 1993 Interaction of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro;J. Biol. Chem. 268 2767–2772

    Google Scholar 

  • Buchner J 1996 Supervising the fold: functional principles of molecular chaperones;FASEB J. 10 10–19

    Article  CAS  PubMed  Google Scholar 

  • Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmidt F X and Kiefhaber T 1991 GroE facilitates refolding of citrate synthase by suppressing aggregation;Biochemistry 30 1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Bukau B and Horwich A L 1998 The Hsp70 and Hsp60 chaperone machines;Cell 92 351–366

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Hesterkamp T and Luirink J 1997 Growing up in a dangerous environment: a network of multiple targeting and folding pathways of nascent polypeptides in the cytosol;Trends Cell Biol. 6 480–485

    Article  Google Scholar 

  • Caspers G J, Leunissen J A M and De Jong W W 1995 The expanding small heat shock protein family and structure predictions of the conserved α-crystallin domain;J. Mol. Evol. 40 238–248

    Article  CAS  PubMed  Google Scholar 

  • Chang H J, Nathan D F and Lindquist S 1997 In vivo analysis of the Hsp90 co-chaperone Stil (p60);Mol. Cell. Biol. 17 318–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Sullivan D S and Huffacker T C 1994 Two yeast genes with similarity to TCP-1 are required for microtubule and actin formation in vivo;Proc. Natl. Acad. Sci. USA 91 9111–9115

    Article  CAS  PubMed  Google Scholar 

  • Cheng M Y, Hartl F-U and Horwich A L 1990 The mitochondrial chaperonin hsp60 is required for its own assembly;Nature (London) 348 455–458

    Article  CAS  Google Scholar 

  • Chirico W J, Waters M G and Blobel G 1988 70K heat-shock related protein stimulate protein translocation into microsomes;Nature (London) 322 805–810

    Article  Google Scholar 

  • Corrales F J and Fersht A R 1996 Towards a mechanism for GroEL-GroES chaperone activity: an ATPase-gated and pulsed folding and annealing cage;Proc. Natl. Acad. Sci. USA 93 4509–4512

    Article  CAS  PubMed  Google Scholar 

  • Craig E A, Gambill B D and Nelson R J 1993 Heat-shock proteins: molecular chaperones of protein biogenesis;Microbiol. Rev. 57 402–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cutforth T and Rubin G 1994 Mulations in HSP83 and CDC37 impair signaling by the sevenless receptor tyrosine kinase inDrosophila;Cell 77 1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Cyr D M, Langer T and Douglas M G 1994 DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70,Trends Biochem. Sci. 19 176–181

    Article  CAS  PubMed  Google Scholar 

  • Demand J, Luders J and Höhfeld J 1998 The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors;Mol. Cell. Biol. 18 2023–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshaies R J, Koch B D, Werner-Washburne M, Craig E A and Schekman R 1988 A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides;Nature (London) 332 800–805

    Article  CAS  Google Scholar 

  • Dey B, Caplan A J and Boschelli F 1996 The Ydj1 molecular chaperone facilitates formation of active p60(v-src) in yeast;Mol. Biol. Cell 7 91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamant S, Azem A, Weiss C and Goloubinoff P 1995 Increased efficiency of GroE-assisted protein-folding by manganese ions;J. Biol. Chem. 270 28387–28391

    Article  CAS  PubMed  Google Scholar 

  • Dittmar K D, Demady D R, Stancato L F, Krishna P and Pratt W B 1997 Folding of the glucocorticoid receptor-Hsp90-based chaperone machinery. The role of p23 is to stabilize receptor-hsp90 heterocomplex formed by hsp90-p60-hsp70;J. Biol. Chem. 272 21213–21220

    Article  CAS  PubMed  Google Scholar 

  • Duina A A, Chang H J, Marsh J A, Lindquist S and Gaber R F 1996 A cyclophilin function in Hsp90-dependent signal transduction;Science 274 1713–1715

    Article  CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Gräber S, Gaestel M and Buchner J 1997 Binding of non-native protein to HSP25 during heat shock creates a reservoir of folding intermediates for reactivation;EMBO J. 16 221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis R J 1994 Roles of molecular chaperones in protein folding;Curr. Opin. Struct. Biol. 4 117–122

    Article  CAS  Google Scholar 

  • Ellis R J 1997 Molecular chaperones: Avoiding the crowd;Curr. Biol. 7 531–533

    Article  Google Scholar 

  • Ellis R J and Hemmingsen S M 1994 Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures;Trends Biochem. Sci. 14 339–342

    Article  Google Scholar 

  • Ellis R J and van der Vries S M 1991 Molecular chaperones;Annu. Rev. Biochem. 60 321–347

    Article  CAS  PubMed  Google Scholar 

  • Escher A and Szalay A A 1993 GroE-mediated folding of bacterial luciferases in vivo;Mol. Gen. Genet. 238 65–73

    CAS  PubMed  Google Scholar 

  • Ewalt K L, Hendrick J P, Houry W A and Harti F-U 1997 In vivo observation of polypeptide flux through the bacterial chaperonin system;Cell 90 491–500

    Article  CAS  PubMed  Google Scholar 

  • Farr G W, Scharl E C, Schumacher R J, Sondek S and Horwich A L 1997 Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms;Cell 89 927–937

    Article  CAS  PubMed  Google Scholar 

  • Fenton W A and Horwich A L 1997 GroEL-mediated protein folding;Protein Sci. 6 743–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forreiter C, Kirschner M and Nover L 1997 Stable transformation of Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo;Plant Cell 7 2171–2181

    Article  Google Scholar 

  • Freeman B C and Morimoto R I 1996 The human cytosolic molecular chaperones HSP90 (HSC70) and HDJ-1 have distinct roles in recognition of a non-native protiin and protein refolding;EMBO J. 15 2969–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman B C, Toft D O and Morimoto R I 1996 Molecular chaperone machines: Chaperone activities of cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23;Science 274 1718–1720

    Article  CAS  PubMed  Google Scholar 

  • Frydman J E and Hartl F-U 1996 Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms;Science 272 1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Frydman J E and Höhfeld J 1997 Chaperones get in touch: the Hip-Hop connection;Trends Biochem. Sci. 22 87–92

    Article  CAS  PubMed  Google Scholar 

  • Gatenby A, Viitanen P V and Lorimer G H 1990 Chaperonin assisted protein folding and assembly: implications for the production of functional proteins in bacteria;Trends Biotechnol. 6 354–357

    Article  Google Scholar 

  • Gatenby A A and Viitanen P V 1994 Structural and functional aspects of chaperonin-mediated protein folding;Annu. Rev. Plant Physiol. 45 469–491

    Article  CAS  Google Scholar 

  • Georgopoulos C P, Hendrix R W, Kaiser A D and Wood W B 1972 Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly;Nature New Biol. 239 38–42

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, Christeller J T, Gatenby A A and Lorimer G H 1989 Reconstitution of active ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP;Nature (London) 342 884–889

    Article  CAS  Google Scholar 

  • Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M and Mattick J S 1990 Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes;Proc. Natl. Acad. Sci. USA 87 3513–3517

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S, Wickner S and Maurizi M R 1997 Protein quality control: triage by chaperones and proteases;Genes Dev. 11 815–823

    Article  CAS  PubMed  Google Scholar 

  • Gould S J, Keller G-A, Schneider M, Howell S H, Garrad L J, Goodman J M, Distel B, Tabak H and Subramani S 1990 Peroxisomal protein import is conserved between yeast, plants, insects and mammals;EMBO J. 9 85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray J C and Row P E 1995 Protein translocation across chloroplast envelope membranes;Trends Cell. Biol. 5 243–247

    Article  CAS  PubMed  Google Scholar 

  • Hartl F-U 1996 Molecular chaperones in cellular protein folding;Nature (London) 381 571–580

    Article  CAS  Google Scholar 

  • Hartl F-U and Martin J 1995 Molecular chaperones in cellular protein folding;Curr. Opin. Struct. Biol. 5 92–102

    Article  CAS  PubMed  Google Scholar 

  • Hayer-Hartl M K, Weber F and Hartl F-U 1996 Mechanism of chaperonin action—GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis;EMBO J. 15 6111–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckathorn S A, Downs C A, Sharkey T D and Coleman J S 1998 The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress;Plant Physiol. 116 439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrick J P and Hartl F-U 1993 Molecular chaperone functions of heat stress proteins;Annu Rev. Biochem. 62 349–384

    Article  CAS  PubMed  Google Scholar 

  • Hendrix R W 1979 Purification and properties of GroE, a host protein involved in bacteriophage assembly;J. Mol. Biol. 129 375–392

    Article  CAS  PubMed  Google Scholar 

  • Höhfeld J and Hartl F-U 1994 Post translational protein import and folding;Curr. Opin. Cell Biol. 6 499–509

    Article  PubMed  Google Scholar 

  • Höhfeld J and Jentsch S 1997 GrpE-like regulation of the HSC70 chaperone by the anti-apoptotic protein BAG-1;EMBO J. 16 6209–6216

    Article  PubMed  PubMed Central  Google Scholar 

  • Höhfeld J, Minami Y and Hartl F-U 1995 Hip, a novel cochaperone involved in the eukaryotic Hsc70/HSP40 reaction cycle;Cell 83 589–598

    Article  PubMed  Google Scholar 

  • Höll-Neugebauer B, Rudolph R, Schmidt M and Buchner J 1991 Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of α-glucosidase from yeast;Biochemistry 30 11609–11614

    Article  PubMed  Google Scholar 

  • Hook D W A and Harding J J 1997 Molecular chaperones protect catalase against thermal stress;Eur. J. Biochem. 247 380–385

    Article  CAS  PubMed  Google Scholar 

  • Horst M, Azem A, Schatz G and Glick B S 1997 What is the driving force for protein import into mitochondria;Biochim. Biophys. Acta-Bioenerg. 1318 71–78

    Article  CAS  Google Scholar 

  • Horwitz J 1992 α-crystallin can function as a molecular chaperone;Proc. Natl. Acad. Sci. USA 89 10449–10453

    Article  CAS  PubMed  Google Scholar 

  • Hunt J F, Weaver A J, Landry S J, Gierasch L and Deisenhofer J 1996 The crystal structure of the GroES co-chaperonin at 2δ8 Å resolution;Nature (London) 379 37–45

    Article  CAS  Google Scholar 

  • Hunter T and Poon R Y C 1997 Cdc37—A protein kinase chaperone;Trends Cell Biol. 7 157–161

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson K A, Czar M J, Scherrer L C and Pratt W B 1992 Monovalent cation selectivity for ATP-dependent association of the glucocorticoid receptor with Hsp70 and Hsp90;J. Biol. Chem. 267 14047–14053

    Google Scholar 

  • Hutchinson K A, Stancato L F, Owens-Grillo J K, Johnson J J, Krishna P, Toft D O and Pratt W B 1995 The p23-kDa acidic protein in reticulocyte lysate is the weakly bound component o the Hsp foldosome that is required for assembly of the glucocorticoid receptor to a functional heterocomplex with Hsp90;J. Biol. Chem. 270 18841–18847

    Article  Google Scholar 

  • Jakob U and Buchner J 1994 Assisting spontaneity: the role of HSP90 and small Hsps as molecular chaperones;Trends Biol. Sci. 19 205–211

    Article  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K and Buchner J 1993 Small heat shock proteins are molecular chaperones;J. Biol. Chem. 268 1517–1520

    CAS  PubMed  Google Scholar 

  • Jakob U, Lilie H, Meyer I and Buchner J 1995 Transient interactions of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo;J. Biol. Chem. 270 7288–7294

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Scheibel T, Bose S, Reinstein J and Buchner J 1996 Assessment of the ATP binding properties of HSP90;J. Biol. Chem. 271 10035–10041

    Article  CAS  PubMed  Google Scholar 

  • Johnson J L and Craig E A 1997 Protein folding in vivo: Unraveling complex pathways;Cell 90 201–204

    Article  CAS  PubMed  Google Scholar 

  • Johnson B D, Schumacher R J, Ross E D and Toft D O 1998 Hop modulates hsp70/hsp90 interactions in protein folding;J. Biol. Chem. 273 3679–3686

    Article  CAS  PubMed  Google Scholar 

  • Kelly W L and Georgopoulos C 1997 The T/t common exon of simian virus 40, JC and BK polyoma virus T antigen can functionally replace the J-domain of theEscherichia coli DnaJ molecular chaperone;Proc. Natl. Acad. Sci. USA 94 3679–3684

    Article  Google Scholar 

  • Kern G, Schmidt M, Buchner J and Jaenicke R 1992 Glycosylation inhibits the interaction of invertase with the chaperone GroEL;FEBS Lett. 305 203–205

    Article  CAS  PubMed  Google Scholar 

  • Kimpel J A and Key J 1985 Heat shock in plants;Trends Biochem. Sci. 10 353–357

    Article  CAS  Google Scholar 

  • Lee G H, Pokala N and Vierling E 1995 Structure and in vitro chaperone activity of cytosolic small heat shock proteins from pea;J. Biol. Chem. 270 10432–10438

    Article  CAS  PubMed  Google Scholar 

  • Lee G H, Roseman A M, Saibil H R and Vierling E 1997 A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state;EMBO J. 16 659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lill R, Nargang F E and Neupert W 1996 Biogenesis of mitochondrial proteins;Curr. Opin. Cell Biol. 8 505–512

    Article  CAS  PubMed  Google Scholar 

  • Lubeck J, Heins L and Soll J 1997 Protein import into chloroplasts;Physiol. Plant. 100 53–64

    Article  Google Scholar 

  • Marco S, Carrascosa J L and Valpuesta J M 1994 Reversible interaction of β-actin along the channel of the TCP-1 cytoplasmic chaperone;Biophys. J. 67 364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthew C R 1993 Pathways of protein folding;Annu. Rev. Biochem. 62 653–683

    Article  Google Scholar 

  • Mayhew M, da Silva A C R, Martin J, Erdjument-Bromage H and Hartl F-U 1996 Protein folding in the central cavity of the GroEL-GroES chaperonin complex;Nature (London) 379 420–426

    Article  CAS  Google Scholar 

  • Martin J 1997 Molecular chaperones and mitochondrial protein folding;J Bioenerg. Biomem. 29 35–43

    Article  CAS  Google Scholar 

  • Martin J and Hartl F-U 1997 Chaperone-assisted protein folding;Curr. Opin. Struct. Biol. 7 41–52

    Article  CAS  PubMed  Google Scholar 

  • Moore A L, Wood C K and Watts F Z 1994 Protein import into plant mitochondria;Annu. Rev. Plant Physiol. Plant Mol. Biol. 45 545–575

    Article  CAS  Google Scholar 

  • Morimoto R I, Tissieres A and Georgopoulos C (eds) 1994The biology of heat shock proteins and molecular chaperones (New York: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Nair S C, Rimerman R A, Toran E J, Chen S, Prapapanich V, Butts R N and Smith D F 1997 Molecular cloning of human FKBP51 and comparison of immunophilin interaction with Hsp90 and progesterone receptor;Mol. Cell. Biol. 17 594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair S C, Toran E J, Rimerman R A, Hyermstad S, Smithgall T E and Smith D F 1976 A pathway of multi chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor and the aryl hydrocarbon receptor;Cell Stress Chap. 1 237–250

    Article  Google Scholar 

  • Nathan D F and Lindquist S 1995 Mutational analysis of Hsp90 function: interaction with a steroid receptor and a protein kinase;Mol. Cell. Biol. 15 3917–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan D F, Vos M H and Lindquist S 1997 In vivo function of theSaccharomyces cerevisiae Hsp90 chaperone;Proc. Natl. Acad. Sci. USA 94 12949–12956

    Article  CAS  PubMed  Google Scholar 

  • Nemoto T and Sato N 1998 Oligomeric forms of the 90-kDa heat shock protein;Biochem. J. 330 989–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netzer W J and Hartl F U 1998 Protein folding in the cytosol: chaperonin-dependent and-independent mechanism;Trends Biochem. Sci. 23 68–73

    Article  CAS  PubMed  Google Scholar 

  • Neupert W 1997 Protein import into mitochondria;Annu. Rev. Biochem. 66 863–917

    Article  CAS  PubMed  Google Scholar 

  • Nover L 1991Heat shock response (Boca Raton: CRC Press)

    Google Scholar 

  • Nover L and Scharf K-D 1997 Heat stress proteins and transcription factors;Cell. Mol. Life Sci. 53 80–103

    Article  CAS  PubMed  Google Scholar 

  • Nover L, Scharf K-D and Neumann D 1983 Formation of cytoplasmatic heat shock granules in tomato cell cultures and leaves;Mol. Cell. Biol. 3 1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nover L, Scharf K-D and Neumann D 1989 Cytoplasmatic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs;Mol. Cell. Biol. 9 1298–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens-Grillo J K, Czar M J, Hutchinson K A, Hoffman K, Perdew G H and Pratt W B 1996 A model of protein targeting mediated by immunophilins and other proteins that bind to Hsp90 via tetratricopeptide repeat domains;J. Biol. Chem. 271 13468–13475

    Article  CAS  PubMed  Google Scholar 

  • Pak M and Wickner S 1997 Mechanism of protein remodeling by ClpA chaperone;Proc. Natl. Acad. Sci. USA 94 4901–4906.

    Article  CAS  PubMed  Google Scholar 

  • Parsell D A, Kowal A S, Singer M A and Lindquist S 1994 Protein dissaggregation mediated by heat shock protein 104;Nature (London) 372 475–478

    Article  CAS  Google Scholar 

  • Parsell D A and Lindquist S 1993 The function of heat stress proteins in stress tolerance—Degradation and reactivation of damaged proteins;Annu. Rev. Genet. 27 437–496

    Article  CAS  PubMed  Google Scholar 

  • Pfanner N, Craig E A and Honlinger A 1997 Mitochondrial preprotein translocase;Annu. Rev. Cell Dev. Biol. 13 25–51

    Article  CAS  PubMed  Google Scholar 

  • Plater M L, Goode D and Crabbe M J C 1996 Effects of side-directed mutations on the chaperone-like activity of alpha-B-crystallin;J. Biol. Chem. 271 28558–28566

    Article  CAS  PubMed  Google Scholar 

  • Pratt W B 1998 The hsp90-based chaperone system: Involvement in signal transduction from a variety of hormone and growth factor receptors;Proc. Soc. Exp. Biol. Med. 217420–434

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Roe S M, O'Brien R, Ladbury J E, Piper P W and Pearl L H 1997 Identification and structural characterization of the ATP/ADP-binding side in the Hsp90 molecular chaperone;Cell 90 65–75

    Article  CAS  PubMed  Google Scholar 

  • Rajaraman K, Raman B and Rao C M 1996 Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha crystallin;J. Biol. Chem. 271 27595–27600

    Article  CAS  PubMed  Google Scholar 

  • Rassow J, von Ahsen O, Bomer U and Pfanner N 1997 Molecular chaperones—towards a characterization of the heat shock protein 70 family;Trends Cell Biol. 7 129–133

    Article  CAS  Google Scholar 

  • Rassow J, Maarse A C, Krainer E, Kubrich M, Müller H, Meijer M, Craig E A and Pfanner N 1994 Mitochondrial protein import—biochemical and genetic evidence for interaction of matrix Hsp70 and the inner membrane protein MIM44;J. Cell. Biol. 127 1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Rassow J and Pfanner N 1996 Protein biogenesis—chaperones for nascent polypeptides;Curr. Biol. 6 115–118

    Article  CAS  PubMed  Google Scholar 

  • Ruddon R W, Sherman S A and Bedows E 1996 Protein folding in the endoplasmatic reticulum—lessons from the human chorinic gonadotropin beta subunit;Protein Sci. 5 1443–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rye H S, Burston S G, Fenton W A, Beechem J M, Xu Z, Siegler P B and Horwich A L 1997 Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL;Nature (London) 388 792–798

    Article  CAS  Google Scholar 

  • Scharf K-D, Höhfeld I and Nover L 1998 Heat stress response and heat stress transcription factor;J. Biosci. 23 313–329

    Article  CAS  Google Scholar 

  • Scheibel T, Weikl T and Buchner J 1998 Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence;Proc. Natl. Acad. Sci. USA 95 1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Scherrer L C, Dalman F C, Massa E, Meshinchi S and Pratt W B 1990 Structual and functional reconstitution of the glucocorticoid receptor-Hsp90 complex;J. Biol. Chem. 265 21397–21400

    CAS  PubMed  Google Scholar 

  • Scherrer L C, Hutchinson K A, Sanchez E R, Randall S K and Pratt W B 1992 A heat shock protein complex isolated from rabbit reticulocyte lysate can reconstitute a functional glucocorticoid receptor-Hsp90 complex;Biochemistry 31 7325–7329

    Article  CAS  PubMed  Google Scholar 

  • Schirmer E C, Glover J R, Singer M A and Lindquist S 1996 HSP100/Clp proteins: a common mechanism explains diverse functions;Trends Biochem. Sci. 21 289–296

    Article  CAS  PubMed  Google Scholar 

  • Schmid F X 1993 Prolyl isomerases: enzymatic catalysis of slow protein-folding reactions;Annu. Rev. Biophys. Biomol. Struc. 22 123–143

    Article  CAS  Google Scholar 

  • Schmid F X 1995 Protein folding: Prolyl isomerases join the fold;Curr. Biol. 5 993–994

    Article  CAS  PubMed  Google Scholar 

  • Schmitt M, Neupert W and Langer T 1995 HSP78, a Clp homologue within mitochondria can substitute for chaperone functions of mt-HSP70;EMBO J. 14 3434–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishewski S, Rosen N and Hartl F-U 1997 Pharmacological shifting of a balance between protein refolding and degradation mediated by HSP90;Proc. Natl. Acad. Sci. USA 93 14536–14541

    Article  Google Scholar 

  • Schröder H, Langer T, Hartl F-U and Bukau B 1993 DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage;EMBO J. 12 4137–4144

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte T W, Blagosklonny M V, Rommanova L, Mushinski J F, Monia B P, Johnston J F, Nguyen P, Trepel J and Neckers L M 1996 Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogene-activated protein kinase signaling pathway;Mol. Cell. Biol. 16 5839–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher R J, Hansen W J, Freeman B C, Alnemri G, Litwack G and Toft D O 1996 Cooperative action of HSP70, HSP90 and DnaJ proteins in protein renaturation;Biochemistry 35 14889–14898.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz E and Neupert W 1994 Mitochondrial protein import: mechanisms, components and energetics;Biochim. Biophys. Acta 1187 270–274

    Article  CAS  PubMed  Google Scholar 

  • Smith D F, Sullivan W P, Marion T N, Zaitsu K, Madden B, McCormick D J and Toft D O 1993 Identification of a 60 kDa stress related protein, p60, which interacts with HSP90 and HSP70;Mol. Cell. Biol. 13 869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrer H, Rutkat K and Buchner J 1997 Catalysis of protein folding by symmetric chaperone complexes;Proc. Natl. Acad. Sci. USA 94 1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Stebbins C E, Russo A A, Schneider C, Rosen N, Hartl F-U and Pavletich N P 1997 Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent;Cell 89 239–250

    Article  CAS  PubMed  Google Scholar 

  • Stepanova L, Leng X, Parker S B and Harper J W 1996 Mammalian p50/cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes CDK4;Genes Dev. 10 1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan J A and Reed J C 1995 Cloning and functional analysis of BAG-1: a novel Bcl-2 binding protein with anti-cell death activity;Cell 80 279–284

    Article  CAS  PubMed  Google Scholar 

  • Teshima T, Kondo A and Fukuda H 1997 Reactivation of thermally inactivated enzymes by free and immobilized chaperonin GroEL/ES;Appl. Microbiol. Biotechnol. 48 41–46

    Article  CAS  PubMed  Google Scholar 

  • Thomas J G, Ayling A and Baneyx F 1997 Molecular chaperones, folding catalysts and the recovery of active recombinant proteins fromE. coli. To fold or to refold;Appl. Biochem. Biotechnol. 66 197–238

    Article  CAS  PubMed  Google Scholar 

  • Thulasiraman V and Matts R L 1996 Effect of geldanamycin of the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate;Biochemistry 35 13443–13450

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Huang Y, Rommelaere H, Vandekerkhove J, Ampe C and Cowan N J 1996 Pathway leading to correct folded β-Tubulin;Cell 86 287–296

    Article  CAS  PubMed  Google Scholar 

  • Ungewickel E, Ungewickel H and Holstein S E H 1997 Functional interaction of the auxilin J domain with the nucleotide and substrate binding molecules of Hsc70;J. Biol. Chem. 272 19594–19600

    Article  Google Scholar 

  • Vierling E 1991 The roles of heat shock proteins in plants;Annu. Rev. Plant Physiol. Plant Mol. Biol. 42 579–620

    Article  CAS  Google Scholar 

  • Viitanen P V, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer G H, Gatenby A and Soll J 1995 Functional characterization of the higher plant chloroplast chaperonins;J. Biol. Chem. 270 18158–18164

    Article  CAS  PubMed  Google Scholar 

  • Vine D B-N and Drubin D G 1994 A yeast TCP-1 like protein is required for actin function in vivo;Proc. Natl. Acad. Sci. USA 91 9116–9120

    Article  Google Scholar 

  • Von Ahsen O, Tropschug M, Pfanner N and Rassow J 1997 The chaperonin cycle cannot substitute for prolyl-isomerase activity, but GroEL alone promotes productive folding of a cyclophilin-sensitive substrate to a cyclophilin-resistant form;EMBO J. 16 4568–4578

    Article  Google Scholar 

  • Waters E R 1995 The molecular evolution of the small heat-shock proteins in plants;Genetics 141 785–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waters E R, Lee G J and Vierling E 1996 Evolution, structure and function of the small heat shock proteins in plants;J. Exp. Bot. 47 325–338

    Article  CAS  Google Scholar 

  • Weissman J S, Hohl C M, Kovalenko O, Kashi Y, Chen S, Braig K, Sailbil H R, Fenton W A and Horwich A L 1995 Mechanism of GroEL action: Productive release of polypeptide fron a sequestered position under GroES;Cell 83 577–587

    Article  CAS  PubMed  Google Scholar 

  • Welch W J and Brown C R 1996 Influence of molecular and chemical chaperones on protein folding;Cell Stress Chap. 1 109–115

    Article  CAS  Google Scholar 

  • Wickner S, Gottesman S, Skowyra D, Hoskins J, McKenney K and Maurizi M R 1994 A molecular chaperone, ClpA, functions like DnaK and DnaJ;Proc. Natl. Acad. Sci. USA 91 12218–12222

    Article  CAS  PubMed  Google Scholar 

  • Wiech H, Buchner J, Zimmermann R and Jakob U 1992 HSP90 chaperones protein folding in vitro;Nature (London) 358 169–170

    Article  CAS  Google Scholar 

  • Withesell L, Mimnaugh E G, De Costa B, Myers C E and Neckers L M 1994 Inhibition of heat shock protein 90-p60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation;Proc. Natl. Acad. Sci. USA 91 8324–8328

    Article  Google Scholar 

  • Xu Y and Lindquist S 1993 Heat-shock protein Hsp90 governs the activity of pp60V-src kinase;Proc. Natl. Acad. Sci. USA 90 7074–7078

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Horwich A L and Siegler P B 1997 The crystal structure of the asymmetric GroEL-GroES-(ATP)7 chaperonin complex;Nature (London) 388 741–750

    Article  CAS  Google Scholar 

  • Yaffe M B, Farr G W, Miklos D, Horwich A L, Sternlicht M L and Sternlicht H 1992 TCP1 complex is a molecular chaperone in tubulin biogenesis;Nature (London) 358 245–248

    Article  CAS  Google Scholar 

  • Zahn R and Plückthun A 1992 GroE prevents the accumulation of early folding intermediates of pre-β-lactamase without changing the folding pathway;Biochemistry 31 3249–3255

    Article  CAS  PubMed  Google Scholar 

  • Zeiner M, Gebauer M and Gehring U 1997 Mammalian protein RAP46: an interaction partner and modulator of 70 kDa heat shock protein;EMBO J. 16 5483–5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Nover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forreiter, C., Nover, L. Heat induced stress proteins and the concept of molecular chaperones. J. Biosci. 23, 287–302 (1998). https://doi.org/10.1007/BF02936122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936122

Keywords

Navigation