Skip to main content
Log in

The occurrence and possible function of hydroxycinnamoyl acid amides in plants

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Altman A and Bachrach U (1981) Involvement of polyamines in plant growth and senescence. In: Caldarera CM, Zappia U and Bachrach U, eds. Advances in Polyamine Research, Vol 13, pp 365–375. New-York: Raven Press

    Google Scholar 

  2. Bachrach U (1973) Function of Naturally Occurring Polyamines, pp 40–120. New York: Academic Press

    Google Scholar 

  3. Bagni N (1970) Metabolic changes of polyamines during the germination of Phaseolus vulgaris. New Phytol 69:159–164

    Google Scholar 

  4. Bagni N and Serafini Fracassini D (1973) The role of polyamines as growth factors in higher plants and their mechanisms of action. Int Plant Growth Substances, pp 1205–1207. Tokyo: Hirokawa

    Google Scholar 

  5. Bagni N, Calzoni GL and Speranza A (1978) Polyamines as sole nitrogen sources for Helianthus tuberosus explants in vitro. New Phytol 80:317–323

    Google Scholar 

  6. Belliard J, Pernes J and Sandmeier M (1979) Les différentes phases du développement chez le Mil (Pennisetum typhoides Stapf et Hubbard) et la recherche de marqueurs. Physiol Vég 17:387–397

    Google Scholar 

  7. Berlin J and Widholm JM (1977) Correlation between phenylalanine ammonia lyase activity and phenolic biosynthesis in p-fluorophenylalanine — sensitive and — resistant tobacco and carrot tissue cultures. P1 Phys 59:550–553

    Google Scholar 

  8. Berlin J (1980) p-fluorophenylalanine resistant cell lines of tobacco. Z Pflanzenphysiol 97:317–324

    Google Scholar 

  9. Berlin J (1981) Formation of putrescine and cinnamoylputrescine in tobacco cell cultures. Phytochemistry 20:53–55

    Google Scholar 

  10. Berlin J and Widholm JM (1978) Metabolism of phenylalanine and tyrosine in tobacco cell lines resistant and sensitive to p-fluorophenylalanine. Phytochemistry 17:65–68

    Google Scholar 

  11. Berlin J and Forche E (1981) D-α-Difluoro methylornithine causes enlargement of cultured tobacco cells. Z Pflanzenphysiol 101:277–282

    Google Scholar 

  12. Bernier G (1964) Etude physiologique et histochimique de l'évolution du méristème apical de Sinapis alba L cultivé en milieu conditionné et en diverses durées de jours favorables ou défavorables à la mise àfleur. Acad R Belg Mem (Sci)T XVI 71

  13. Bernier G (1979) The sequences of floral evocation. In: CNRS ed. La Physiologie de la Floraison, p 129. Paris: CNRS

    Google Scholar 

  14. Bertossi F, Bagni N, Moruzzi G and Caldarera CM (1965) Spermine as a new growth-promoting substance for Helianthus tuberosus (Jerusalem artichoke) in vitro. Experientia: 21:80–81

    Google Scholar 

  15. Besnard-Wibout C (1977) Réponses du méristème caulinaire à différents types d'induction florale. Ann Biol 16:385–449

    Google Scholar 

  16. Bird CR and Smith TA (1981) The biosynthesis of coumaroylagmatine barley seedlings. Phytochemistry 10:2345–2346

    Google Scholar 

  17. Buta JG and Izac RR (1972) Solanaceae: Caffeoylputrescine in Nicotiana tabacum. Phytochemistry 11:1188–1189

    Google Scholar 

  18. Cabanne F, Martin-Tanguy J, Perdrizet E, Vallée JC, Grenet L, Prévost J and Martin C (1976) Presence de composés phénoliques liés à des polyamines dans les feuilles de Nicotiana tabacum var. Xanthi n.c. sain. Apparition contemporaine de l'induction florale. CR Acad Sc 282:1959–1962

    Google Scholar 

  19. Cabanne F, Martin-Tanguy J and Martin C (1977) Phénolamines associés à l'induction florale et à l'état reproducteur du Nicotiana L var. Xanthi n.c. Physiol Veg 15:429–443

    Google Scholar 

  20. Cabanne F, Paynot M, Javelle F, Martin-Tanguy J and Martin C (1977) Activité phénylalanine ammoniac lyase et état floral du Nicotiana tabacum var. Xanthi n.c. Physiol Vég 15:445–451

    Google Scholar 

  21. Cabanne F, Dalebroux MA, Martin-Tanguy J and Martin C (1981) Hydroxycinnamic acid amides and ripening to flower of Nicotiana tabacum var. Xanthi n.c. Physiol Plant 53:399–404

    Google Scholar 

  22. Clarke DD (1982) The accumulation of cinnamic acid amides in the cell walls of potato tissue as an early response to fungal attack. In: Wood RKS, ed. Active Defence Mechanisms in Plants. New York-London: Plenum Press

    Google Scholar 

  23. Cohen SS (1971) Introduction to the Polyamines, pp 20–70. Englewood Cliffs NJ: Prentice Hall

    Google Scholar 

  24. Deletang J (1974) Présence de cafféyolputrescine, de cafféoylspermidine et de dicafféoylspermidine chez Nicotiana tabacum. Ann Tabac SEITA Sect 2, 11:123–170

    Google Scholar 

  25. Dumas E, Perdrizet E and Vallée JC (1981) Evolution quantitative des acides aminés et amines libres au cours du développement de diverses espèces de Nicotiana. Physiol Veg 19:155–165

    Google Scholar 

  26. Ehmann A (1974) N-(p-Coumaryl)-tryptamine and N-ferulyltryptamine in kernels of Zea mays. Phytochemistry 13:1979–1983

    Google Scholar 

  27. Flores HE and Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Google Scholar 

  28. Galston AW and Kaur-Sawhney R (1970) Polyamines and plant cells. What's New in Plant Physiol 11:1–8

    Google Scholar 

  29. Gregory LE (1965) Physiology of tuberization in plants. In: Ruhland W, ed. Encyclopedia of Plant Physiology, pp 1328–1354 Berlin: Springer-Verlag

    Google Scholar 

  30. Hollerbach A and Spiteller G (1970) Die Struktur des Paucins. Mh Chem 101:141–156

    Google Scholar 

  31. Ingle J, Beitz D and Hageman RH (1965) Changes in composition during development and maturation of maize seeds. Plant Physiol 40:835–839

    Google Scholar 

  32. Jolivet E (1969) Physiologie de la tubérisation. Ann Physiol Veg 11:265–301

    Google Scholar 

  33. Kaur-Sawhney R, Altman A and Galston AW (1978) Dual mechanisms polyaminemediated control of ribonuclease activity in oat leaf protoplasts. Plant Physiol 62:158–160

    Google Scholar 

  34. Kaur-Sawhney R, Flores HE and Galston AW (1980) Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiol 65:368–371

    Google Scholar 

  35. Knobloch KH, Beutnagel G and Berlin J (1981) Influence of accumulated phosphate on culture, growth and formation of cinnamoylputrescine in medium-induced cell suspension culture of Nicotiana tabacum. Planta, 153:582–585

    Google Scholar 

  36. Kömives T and Casida JE (1982) Effects of Acifluorfen on phenylpropanoid biosynthesis and phenylalanine ammonia-lyase activity in spinach. Pecticide Biochemistry and Physiology 18:191–196

    Google Scholar 

  37. Lance A (1954) Transformation du point végétatif d'Aster sinensis en méristème d'inflorescence. C R Acad Sc 238:2437–2439

    Google Scholar 

  38. Martin C and Gallet M (1966) Hypersensibilité aux virus, température et induction florale chez les végétaux. C R Acad Sc 262:997–1000

    Google Scholar 

  39. Martin C and Gallet M (1966) Contribution à l'étude de l'action de la température sur la réaction d'hypersensibilité de certains hotes à l'égard du virus de la mosaīque du Tabac. C R Acad Sc 262:646–649

    Google Scholar 

  40. Martin C and Martin-Tanguy J (1981) Polyamines conjuguées et limitation de l'expansion virale chez les végétaux. C R Acad Sci 292:249–251

    Google Scholar 

  41. Martin-Tanguy J, Margara J and Martin C (1984) Phénolamides et induction florale de Cichorium intybus dans différentes conditions de culture en serre et in vitro. Physiol Plant 61:259–262

    Google Scholar 

  42. Martin-Tanguy J, Martin C and Gallet M (1973) Présence de composés aromatiques liés à la putrescine dans divers Nicotiana virosés. C R Acad Sc 276:1433–1435

    Google Scholar 

  43. Martin-Tanguy J, Martin C, Gallet M and Vernoy R (1976) Sur de puissants inhibiteurs de multiplication du virus de la mosaīque de tabac. C R Acad Sc 282:2231–2234

    Google Scholar 

  44. Martin-Tanguy J, Cabanne F, Perdrizet E and Martin C (1978) The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry 17:1927–1928

    Google Scholar 

  45. Martin-Tanguy J, Deshayes A, Perdrizet E and Martin C (1979) Hydroxycinnamic acid amides (HCA) in Zea mays: Distribution and changes with cytoplasmic male sterility. Febs Lett 108:176–178

    Google Scholar 

  46. Martin-Tanguy J, Perdrizet E, Prevost J and Martin C (1982) Hydroxycinnamic acid amides in fertile and cytoplasmic male sterile lines of maize. Phytochemistry 21:1939–1945

    Google Scholar 

  47. Mbadiwe EJ (1973) Caffeoylputrescine from Pentaclethra macrophylla. Phytochemistry 12:2546–2547

    Google Scholar 

  48. McDaniel CN and Hsu FC (1976) Position-dependent development of tobacco meristems. Nature 259:564–565

    Google Scholar 

  49. Mizusaki S, Tanable Y and Noguchi M (1970) A new aromatic amide, caffeoylputrescine from callus tissue culture of Nicotiana tabacum. Agr Biol Chem 34:972–973

    Google Scholar 

  50. Mizusaki S, Tanabe Y and Noguchi M (1971) p-Coumaroylputrescine, caffeoylputrescine and feruloylputrescine from callus tissue culture of Nicotiana tabacum. Phytochemistry 10:1347–1350

    Google Scholar 

  51. Montague MJ, Koppenbrink JW and Jaworsk EG (1978) Polyamine metabolism in embryonic cells of Daucus carota. I. Changes in intracellular content and rates of synthesis. Plant Physiol 62:430–433

    Google Scholar 

  52. Negrel J (1984) Aspects du métabolisme de la putrescine et de la tyramine au cours de la réaction hypersensible au virus de la Mosaīque de Tabac chez Nicotiana tabacum. Thése de Doctorat-Paris

  53. Negrel J and Martin C (1984) The biosynthesis of feruloyltyramine in Nicotiana tabacum. Phytochemistry 23:2797–2801

    Google Scholar 

  54. Negrel J, Vallée JC and Martin C (1984) Ornithine decarboxylase activity and the hypersensitive reaction to tobacco mosaic virus in Nicotiana tabacum. Phytochemistry 23:2747–2751

    Google Scholar 

  55. Negrel J and Smith TA (1984) Oxidation of p-coumaroylagmatine in barley seedling extracts in the presence of hydrogen peroxide or thiols. Phytochemistry 23:739–741

    Google Scholar 

  56. Nougarède A, Bronchart R, Bernier G and Rondet P (1964) Comportement du méristème apical de Perilla nankinensis (Lour) en relation avec les conditions photopériodiques. Rev Gen Bot 71:205–238

    Google Scholar 

  57. Paynot M, Martin C and Giraud M (1971) Activité de la phénylalanine-ammoniac lyase et hypersensibilité au virus de la Mosaī que du Tabac de Nicotiana tabacum var. Xanthi n.c. C R Acad Sc 273:537–539

    Google Scholar 

  58. Paynot M, Perennec P, Martin C, Martin-Tanguy J, Vernoy R and Javelle F (1983) Photopériodisme, tubérisation et phénolamides. C R Acad Sc 297:87–90

    Google Scholar 

  59. Ponchet M, Martin-Tanguy J, Poupet A, Marais A and Beck D (1982) Separation and quantification of basic hydroxycinnamic acid amides and hydroxycinnamic acid by reversed-phase high-performance liquid chromatography. J of Chromatography 240:397–404

    Google Scholar 

  60. Ponchet M, Martin-Tanguy J, Marais A and Martin C (1982) Hydroxycinnamoyl acid amides and aromatic amines in the inflorescence of some Araceae species. Phytochemistry 21:2865–2869

    Google Scholar 

  61. Perdrizet E and Prévost J (1981) Aliphatic and aromatic amines during development of Nicotiana tabacum. Phytochemistry 20:2131–2134

    Google Scholar 

  62. Rondest J, Das C, Polonsky J (1968) Sur un nouvel amide naturel, le N (p-hydroxy-phényl)-β- benthyl p-hydroxycinnamide, isolé de Evodia belahe (Rutacées). Bull Soc Chim Fr 6:2411–2414

    Google Scholar 

  63. Ryabinin AA and Il'ina EM (1949) The alkaloid of Salsola subaphylla. Drob. Dokl Akad. Nauk SSR 67:513–516 and Chem Abstracts (1950) 44:1455–1456

    Google Scholar 

  64. Samborski DJ and Rohringer R (1970) Abnormal metabolites of wheat: Occurrence, isolation and biogenesis of 2-hydroxyputrescine amides. Phytochemistry 9:1939–1945

    Google Scholar 

  65. Serafini Fracassini D, Bagni N, Cionini PG and Bennici A (1980) Polyamines and nucleic acids during the first cell cycle of Helianthus tuberosus after the dormancy break. Planta 48:332–337

    Google Scholar 

  66. Smith HH (1972) Plant genetic tumors. Prog Exp Tumor Res 15:138–164

    Google Scholar 

  67. Smith TA (1971) The occurrence, metabolism and function of amines in plants. Biol Rev 46:201–262

    Google Scholar 

  68. Smith TA (1977) Phenethylamine and related compounds in plants. Phytochemistry 16:9–18

    Google Scholar 

  69. Smith TA (1977) Recent Advances in the biochemistry of plant amines. In: Reinhold L, Harborne JB and Swain T, eds. Progress in Phytochemistry. New York: Pergamon Press

    Google Scholar 

  70. Smith TA and Best GR (1978) Distribution of the hordatines in barley. Phytochemistry 17:1093–1098

    Google Scholar 

  71. Smith TA, Bagni N and Serafini Fracassini D (1979) The formation of amines and their derivatives in plants. In: Hewitt EJ and Cutting CV, eds. Nitrogen Assimilation of Plants, pp 557–570

  72. Smith TA, Negrel J and Bird CR (1983) The cinnamic acid amides of the di- and polyamines. In: Bachrach U, Kaye A and Chayen R, eds. Advances in Polyamine Research, Vol 4, pp 347–370. New York: Raven Press

    Google Scholar 

  73. Stoessl A (1965) The antifungal factors in barley. III. Isolation of p-coumaroylagmatine. Phytochemistry 12:973–977

    Google Scholar 

  74. Stoessl A, Rohringer R and Samborski D (1969) 2-Hydroxyputrescine amides as abnormal metabolites of wheat. Tetr Lett 33:2807–2810

    Google Scholar 

  75. Stoessl A and Unwin CH (1978) The antifungal factors in barley. V. Antifungal activity of the hordatines. Can J Botany 48:465–470

    Google Scholar 

  76. Suzuki T, Holden I and Casida JE (1981) Diphenyl ether herbicides remarkably elevate the content in Spinacia oleracea of (E)-3-(4-hydroxy-3-methoxyphenyl)-N-(2-(4-hydroxy-3-methoxyphenyl) ethyl)-2-propenamide. J Agric Food Chem 29:992–995

    Google Scholar 

  77. Tanguy J and Martin C (1972) Phenolic compounds and hypersensitivity reaction in Nicotiana tabacum infected with tobacco mosaic virus. Phytochemistry 11:19–28

    Google Scholar 

  78. Villanueva VR, Adlakha RC and Cantera Soler AM (1978) Changes in polyamine concentration during seed germination. Phytochemistry 17:1245–1249

    Google Scholar 

  79. Wheaton TA and Stewart I (1965) Feruloylputrescine: Isolation and identification from Citrus leaves and fruits. Nature, 206:620–621

    Google Scholar 

  80. Yoshihara T, Takamatsu S and Sakamura S (1978) Three new phenolic amides from the root of egg plant. Agric Biol Chem 42:623–627

    Google Scholar 

  81. Yoshihara T, Yamaguchi K, Takamatsu S and Sakamura S (1981) A new lignan amide, grossamide, from bell pepper (Capsicum annuum var. grossum). Agric Biol Chem 45:2593–2598

    Google Scholar 

  82. Yoshihara T, Yamaguchi K, Sakamura S (1983) The relative configuration of grossamide and hordatines. Agr Biol Chem 47:217–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Tanguy, J. The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul 3, 381–399 (1985). https://doi.org/10.1007/BF00117595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117595

Keywords

Navigation