Skip to main content
Log in

Influence of the peak height distribution on separation performances: Discrimination factor and effective peak capacity

  • Published:
Chromatographia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

A new index of performance of the chromatographic separation between two adjacent peaks, the discrimination factor, d0, is defined. It is normalized between 0 and 1 and is directly and easily determined from the chromatogram. It does not depend on any assumption regarding peak shape, except that the peak profiles of individual sample components have a single mode. Its value depends on the relative heights of the two peaks as well as on their separation.

The separation power of a chromatographic system is classically measured by its peak capacity, defined on the basis of constant resolution between adjacent peaks. A previously developed statistical theory of the composition of mixtures makes it possible to extend the concept of peak capacity by taking into account the peak height distribution in typical average chromatograms. A new parameter, the effective peak capacity, is defined for this purpose on the basis of a constant discrimination factor between adjacent peaks. It allows to take into account the distribution of peak heights in statistical theories of the evaluation of complex chromatograms and in the measurement of the limit of determination in quantitative analysis.

The characteristics of the two new parameters, the discrimination factor and effective peak capacity, are discussed and compared with those of their classical homologs, resolution and peak capacity, in the case of gaussian component peaks of equal widths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Rosenthal, Anal. Chem.54, 63 (1982).

    Article  CAS  Google Scholar 

  2. J. M. Davis, J. C. Giddings, Anal. Chem.55, 418 (1983).

    Article  CAS  Google Scholar 

  3. M. Martin, G. Guiochon, Anal. Chem.57, 289 (1985).

    Article  CAS  Google Scholar 

  4. J. M. Davis, J. C. Giddings, Anal. Chem.57, 2168 (1985).

    Article  CAS  Google Scholar 

  5. M. Martin, D. P. Herman, G. Guiochon, Anal. Chem.58, 2200 (1986).

    Article  CAS  Google Scholar 

  6. J. C. Giddings, Anal. Chem.39, 1027 (1967).

    Article  CAS  Google Scholar 

  7. M. Martin, G. Guiochan, “Statistical theory of the composition of mixtures. Application to the estimation of the number of theoretically detectable components by chromatography”, Communication presented at the 9th International Symposium on Column Liquid Chromatography, Edinburgh, July 1–5, 1985.

  8. D. Ambrose, A. T. James, A. I. M. Keulemans, E. Kovats, H. Röck, C. Rouit, F. H. Stross, in “Gas Chromatography 1960”,R. P. W. Scott, ed., Butterworths, London, 1960; p. 423.

    Google Scholar 

  9. E. Grushka, Anal. Chem.44, 1733 (1972).

    Article  CAS  Google Scholar 

  10. L. R. Snyder, J. Chrom. Sci.10, 200 (1972).

    CAS  Google Scholar 

  11. R. Kaiser, “Chromatographie in der Gas Phase. I. Gas-Chromatographie”, Bibliographisches Institut, Mannheim, 1960; p. 16 and 35.

    Google Scholar 

  12. R. Kaiser, “Chromatographie in der Gas Phase. III. Tabellen”, Bibliographisches Institut, Mannheim, 1962; p. 148.

    Google Scholar 

  13. R. Kaiser, “Chromatographie in der Gas Phase. II. Kapillar-Chromatographie”, Bibliographisches Institut, Mannheim, 1961; p. 32.

    Google Scholar 

  14. R. Kaiser, “Gas Chromatographie”, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1960; p. 33.

    Google Scholar 

  15. L. S. Ettre, J. Gas Chromatogr.,1, 36 (1963).

    CAS  Google Scholar 

  16. A. B. Christophe, Chromatographia,4, 455 (1971).

    Article  CAS  Google Scholar 

  17. M. Martin, M. Z. El Fallah, unpublished work.

  18. A. I. M. Keulemans, A. Kwantes, G. W. A. Rijnders, Anal. Chim. Acta,16, 29 (1957).

    Article  CAS  Google Scholar 

  19. Since the beginning of this work and the submission of a related abstract for communication to a symposium [20], we have been informed that a criterion very similar to do has been independently suggested bySchoenmakers [21].

  20. M. Z. El Fallah, M. Martin, “Extension des concepts de résolution et de capacité de pics en chromatographie”, Communication presented at the 4th Congress of Analytical Chemistry — 36th Congress of GAMS, Paris, December 8–13, 1986.

  21. P. J. Schoenmakers, “Optimization of chromatographic selectivity”, Journal of Chromatography Library, Vol. 35, Elsevier, Amsterdam, 1986; p. 121–123.

    Article  Google Scholar 

  22. M. Z. El Fallah, M. Martin, submitted to publication.

  23. A. Stolyhwo, H. Colin, M. Martin, G. Guiochon, J. Chromatog.288, 253 (1984).

    Article  CAS  Google Scholar 

  24. W. L. Creten, L. J. Nagels, Anal. Chem.59, 822 (1987).

    Article  CAS  Google Scholar 

  25. L. J. Nagels, W. L. Creten, P. M. Vanpeperstraete, Anal. Chem.55, 216 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Fallah, M.Z., Martin, M. Influence of the peak height distribution on separation performances: Discrimination factor and effective peak capacity. Chromatographia 24, 115–122 (1987). https://doi.org/10.1007/BF02688473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688473

Key Words

Navigation