Skip to main content
Log in

Formation of creep cavities in austenitic stainless steels

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The possibility of creep cavity formation at subboundaries in austenitic stainless steels is analysed. It is demonstrated that such nucleation is thermodynamically feasible. A minimum stress must be exceeded in order to create cavities. The nucleation is assumed to take place where subboundaries on one side of a sliding grain boundary meet subgrain corners on the other side (double ledge models). Alternative cavitation positions can be found where particles meet subboundaries. The nucleation model can quantitatively predict the observed nucleation rate. The model gives a nucleation rate that is proportional to the creep rate in agreement with many experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Lim LC (1987) Cavity nucleation at high temperatures involving pile-ups of grain boundary dislocations. Acta Metall 35(7):1663–1673. doi:10.1016/0001-6160(87)90114-3

    Article  Google Scholar 

  2. Presland AEB, Hutchinson RI (1963–64) The effect of substructure on the nucleation of grain-boundary cavities in magnesium. J Inst Metals 92:264–269

  3. Sandström R, Wu R (2013) Influence of phosphorus on the creep ductility of copper. J Nucl Mater 441(1–3):364–371. doi:10.1016/j.jnucmat.2013.06.020

    Article  Google Scholar 

  4. He J, Sandström R (2016) Modelling grain boundary sliding during creep of austenitic stainless steels. J Mater Sci 51(6):2926–2934. doi:10.1007/s10853-015-9601-0

    Article  Google Scholar 

  5. Cui Y, Sauzay M, Caes C, Bonnaillie P, Arnal B (2014) Modeling and experimental study of long term creep damage in austenitic stainless steels. Proc Mater Sci 3:122–128. doi:10.1016/j.mspro.2014.06.023

    Article  Google Scholar 

  6. Laha K, Kyono J, Shinya N (2012) Copper, boron, and cerium additions in type 347 austenitic steel to improve creep rupture strength. Metall Mater Trans A 43(4):1187–1197

    Article  Google Scholar 

  7. Shin JK, Nam SW, Lee SC (2005) A study of nitrogen effect on the characteristics of creep-rupture in 18Cr-9Ni austenitic steels. Key Eng Mater 297-300:409–414

    Article  Google Scholar 

  8. Laha K, Kyono J, Sasaki T, Kishimoto S, Shinya N (2005) Improved creep strength and creep ductility of type 347 austenitic stainless steel through the self-healing effect of boron for creep cavitation. Metall Mater Trans A 36:399–409

    Article  Google Scholar 

  9. Hong JH, Nam SW, Choi SP (1986) The influences of sulphur and phosphorus additions on the creep cavitation characteristics in type 304 stainless steels. J Mater Sci 21(11):3966–3976. doi:10.1007/PL00020267

    Article  Google Scholar 

  10. Harris JE (1965) An analysis of creep ductility of magnox Al80 and its implications. J Nucl Mater 15(3):201–207

    Article  Google Scholar 

  11. Harris JE (1965) Nucleation of creep cavities in magnesium. Trans Metall Soc AIME 233:1509

    Google Scholar 

  12. Crossman FW, Ashby MF (1975) The non-uniform flow of polycrystals by grain-boundary sliding accommodated by power-law creep. Acta Metall 23(4):425–440. doi:10.1016/0001-6160(75)90082-6

    Article  Google Scholar 

  13. Ghahremani F (1980) Effect of grain boundary sliding on steady creep of polycrystals. Int J Solids Struct 16(9):847–862. doi:10.1016/0020-7683(80)90053-0

    Article  Google Scholar 

  14. Zhang J, Luévano AJ, Przystupa MA (1994) Microstructural models for quantitative analysis of grains and second-phase particles. Mater Charact 33(2):175–185. doi:10.1016/1044-5803(94)90081-7

    Article  Google Scholar 

  15. Needham NG, Wheatley JE, Greenwood GW (1975) The creep fracture of copper and magnesium. Acta Metall 23(1):23–27. doi:10.1016/0001-6160(75)90065-6

    Article  Google Scholar 

  16. Needham NG, Gladman T (1980) Nucleation and growth of creep cavities in a type 347 steel. Metal Sci 14(2):64–72

    Article  Google Scholar 

  17. Page RA, Lankford J (1983) Characterization of creep cavitation in sintered alumina by small-angle neutron scattering. J Am Ceram Soc 66(8):c146–c148. doi:10.1111/j.1151-2916.1983.tb10116.x/pdf

    Article  Google Scholar 

  18. Sandstrom R, Wu R, Hagstrom J (2016) Grain boundary sliding in copper and its relation to cavity formation during creep. Mat Sci Eng 651:259–268. doi:10.1016/j.msea.2015.10.100

    Article  Google Scholar 

  19. Laha K, Kyono J, Shinya N (2010) Suppression of creep cavitation in precipitation-hardened austenitic stainless steel to enhance creep rupture strength. Trans Indian Inst Met 63(2–3):437–441

    Article  Google Scholar 

  20. Chen I-W, Argon AS (1981) Creep cavitation in 304 stainless steel. Acta Metall 29:1321–1333

    Article  Google Scholar 

  21. ECCC (2005) European Creep Collaborative Committee DATA SHEETS 2005—HR3C.120

  22. Čermák J (1991) Grain boundary self-diffusion of 51Cr and 59Fe in austenitic NiFeCr alloys. Mater Sci Eng A 148(2):279–287

    Article  Google Scholar 

  23. Clark CL (1953) High temperature alloys (Hochwarmfeste Legierungen). Pitman Publishing Corporation, New York

  24. Arai M, Ogata T, Nitta A (1996) Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM. Jpn Soc Mech Eng 39(3):382–388

    Google Scholar 

  25. NIMS creep data sheet for austenitic stainless steels. http://smds.nims.go.jp/creep/index_en.html

  26. Pitkänen H, Alatalo M, Puisto A, Ropo M, Kokko K, Vitos L (2013) Ab initio study of the surface properties of austenitic stainless steel alloys. Surf Sci 609:190–194. doi:10.1016/j.susc.2012.12.007

    Article  Google Scholar 

  27. 02 AHV (1991) Properties and selection: nonferrous alloys and special-purpose materials. ASM

  28. Wang R, Wang S, Wu X (2011) Edge dislocation core structures in FCC metals determined from ab initio calculations combined with the improved Peierls-Nabarro equation. Phys Scripta. doi:10.1088/0031-8949/83/04/045604

    Google Scholar 

  29. Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New York

    Google Scholar 

  30. Rohrer GS, Holm EA, Rollett AD, Foiles SM, Li J, Olmsted DL (2010) Comparing calculated and measured grain boundary energies in nickel. Acta Mater 58(15):5063–5069. doi:10.1016/j.actamat.2010.05.042

    Article  Google Scholar 

  31. Schaefer HE, Maier K, Weller M, Herlach D, Seeger A, Diehl J (1977) Vacancy formation in iron investigated by positron annihilation in thermal equilibrium. Scr Metall 11(9):803–809. doi:10.1016/0036-9748(77)90079-5

    Article  Google Scholar 

  32. Challeger KD, Moteff J (1973) Quantitative characterization of the substructure of AISI 316 stainless steel resulting from creep. Metall Trans 4:749–755

    Article  Google Scholar 

  33. Cuddy LJ (1970) Internal stresses and structures developed during creep. Metall Trans 1:395–401

    Article  Google Scholar 

  34. Michel DJ, Moteff J, Lovell AJ (1973) Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21 and 816 °C. Acta Metall 21:1269–1277

    Article  Google Scholar 

  35. Ryan ND, McQueen HJ (1986) Dynamic recovery and strain hardening in the hot deformation of type 317 stainless steel. Mater Sci Eng 81:259–272

    Article  Google Scholar 

  36. Arzate OR, Martinez L (1988) Creep cavitation in type 321 stainless steel. Mater Sci Eng A 101:1–6

    Google Scholar 

  37. Beere W, Speight MV (1978) Creep cavitation by vacancy diffusion in plastically deforming solid. Met Sci 21(4):172–176

    Article  Google Scholar 

  38. Rice JR (1981) Constraints on the diffusive cavitation of isolated grain boundary facets in creeping polycrystals. Acta Metall 29:675–681

    Article  Google Scholar 

  39. He J, Sandström R (2016) Prediction of creep rupture strength for austenitic stainless steels. To be published

  40. Smith E, Barnby JT (1967) Crack nucleation in crystalline solids. Metal Sci J 1:56–64

    Article  Google Scholar 

  41. Raj R, Ashby MF (1975) Intergranular fracture at elevated temperature. Acta Metall 23(6):653–666. doi:10.1016/0001-6160(75)90047-4

    Article  Google Scholar 

  42. Raj R (1978) Nucleation of cavities at second phase particles in grain boundaries. Acta Metall 26(6):995–1006. doi:10.1016/0001-6160(78)90050-0

    Article  Google Scholar 

  43. Yoo MH, Trinkaus H (1983) Crack and cavity nucleation at interfaces during creep. Metall Trans A 14(3):547–561. doi:10.1007/BF02643772

    Article  Google Scholar 

  44. Needleman A, Rice JR (1980) Plastic creep flow effects in the diffusive cavitation of grain boudaries. Acta Metall 28(10):1315–1332

    Article  Google Scholar 

  45. Chokshit AH, Mukherjee AK (1989) An analysis of cavity nucleation in superplasticity. Acta Metall 37(11):3007–3017

    Article  Google Scholar 

  46. Jiang XG, Earthman JC, Mohamed FA (1994) Cavitation and cavity-induced fracture during superplastic deformation. J Mater Sci 29(21):5499–5514. doi:10.1007/BF00349941

    Article  Google Scholar 

Download references

Acknowledgement

Financial support through by the European Union (directorate-general for energy), within the project MACPLUS (ENER/FP7EN/249809/MACPLUS) in the framework of the Clean Coal Technologies is gratefully acknowledged. The authors would like to thank the China Scholarship Council (CSC) for funding a stipend (File No. 201207090009) for Junjing He.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjing He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Sandström, R. Formation of creep cavities in austenitic stainless steels. J Mater Sci 51, 6674–6685 (2016). https://doi.org/10.1007/s10853-016-9954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9954-z

Keywords

Navigation