Skip to main content

Investigating Aspects of Renal Physiology and Pharmacology in Organ and Organoid Culture

  • Protocol
  • First Online:
Kidney Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1926))

Abstract

Some aspects of renal physiology, in particular transport across tubular epithelia, are highly relevant to pharmacokinetics and to drug toxicity. The use of animals to model human renal physiology is limited, but human-derived renal organoids offer an alternative, relevant system in culture. Here, we explain how the activity of specific transport systems can be assessed in renal organoid and organ culture, using a system illustrated mainly for mouse but that can be extended to human organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Saxén L, Vainio T, Toivonen S (1962) Effect of polyoma virus on mouse kidney rudiment in vitro. J Natl Cancer Inst 29:597–631. https://doi.org/10.1093/jnci/29.3.597

    Article  PubMed  Google Scholar 

  3. Saxen L (1983) In vitro model-systems for chemical teratogenesis. In: Kolber A, Wong T, Grant L et al (eds) In vitro toxicity testing of environmental agents, part B. Plenum Press, New York, pp 173–190

    Google Scholar 

  4. Gorboulev V, Ulzheimer JC, Akhoundova A et al (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  CAS  PubMed  Google Scholar 

  5. Karbach U, Kricke J, Meyer-Wentrup F et al (2000) Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Ren Physiol 279:F679–F687

    Article  CAS  Google Scholar 

  6. Knight A (2008) Systematic reviews of animal experiments demonstrate poor contributions toward human healthcare. Rev Recent Clin Trials 3:89–96

    Article  PubMed  Google Scholar 

  7. Loghman-Adham M, Kiu Weber CI, Ciorciaro C et al (2012) Detection and management of nephrotoxicity during drug development. Expert Opin Drug Saf 11:581–596. https://doi.org/10.1517/14740338.2012.691964

    Article  CAS  PubMed  Google Scholar 

  8. Benjamin A, da Costa AN, Delaunois A et al (2015) Renal safety pharmacology in drug discovery and development. In: Handbook of experimental pharmacology. Springer, New York, pp 323–352

    Google Scholar 

  9. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  10. Davies J (2014) Engineered renal tissue as a potential platform for pharmacokinetic and nephrotoxicity testing. Drug Discov Today 19:725–729. https://doi.org/10.1016/j.drudis.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  11. Amorino GP, Fox MH (1995) Intracellular Na+ measurements using sodium green tetraacetate with flow cytometry. Cytometry 21:248–256. https://doi.org/10.1002/cyto.990210305

    Article  CAS  PubMed  Google Scholar 

  12. Yasujima T, Ohta K, Inoue K, Yuasa H (2011) Characterization of human OCT1-mediated transport of DAPI as a fluorescent probe substrate. J Pharm Sci 100:4006–4012. https://doi.org/10.1002/jps.22548

    Article  CAS  PubMed  Google Scholar 

  13. Ichida K, Hosoyamada M, Kimura H et al (2003) Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int 63:143–155. https://doi.org/10.1046/j.1523-1755.2003.00710.x

    Article  CAS  PubMed  Google Scholar 

  14. Monien BH, Müller C, Bakhiya N et al (2009) Probenecid, an inhibitor of transmembrane organic anion transporters, alters tissue distribution of DNA adducts in 1-hydroxymethylpyrene-treated rats. Toxicology 262:80–85. https://doi.org/10.1016/j.tox.2009.05.016

    Article  CAS  PubMed  Google Scholar 

  15. Schulz K, Hagos Y, Burckhardt G et al (2015) The isoquinolone derived prolyl hydroxylase inhibitor ICA is a potent substrate of the organic anion transporters 1 and 3. Nephron 131:285–289. https://doi.org/10.1159/000442531

    Article  CAS  PubMed  Google Scholar 

  16. Whitley AC, Sweet DH, Walle T (2005) The dietary polyphenol ellagic acid is a potent inhibitor of hOAT1. Drug Metab Dispos 33:1097–1100. https://doi.org/10.1124/dmd.105.004275

    Article  CAS  PubMed  Google Scholar 

  17. Enomoto A, Takeda M, Shimoda M et al (2002) Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther 301:797–802

    Article  CAS  PubMed  Google Scholar 

  18. Shen H, Liu T, Morse BL et al (2015) Characterization of organic anion transporter 2 (SLC22A7): a highly efficient transporter for creatinine and species-dependent renal tubular expression. Drug Metab Dispos 43:984–993. https://doi.org/10.1124/dmd.114.062364

    Article  CAS  PubMed  Google Scholar 

  19. Hagos FT, Daood MJ, Ocque JA et al (2017) Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine. Xenobiotica 47:346–353. https://doi.org/10.1080/00498254.2016.1187777

    Article  CAS  PubMed  Google Scholar 

  20. Hagos Y, Stein D, Ugele B et al (2007) Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol 18:430–439. https://doi.org/10.1681/ASN.2006040415

    Article  CAS  PubMed  Google Scholar 

  21. Youngblood GL, Sweet DH (2004) Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol 287:F236–F244. https://doi.org/10.1152/ajprenal.00012.2004

    Article  CAS  PubMed  Google Scholar 

  22. Tan PK, Ostertag TM, Miner JN (2016) Mechanism of high affinity inhibition of the human urate transporter URAT1. Sci Rep 6:34995. https://doi.org/10.1038/srep34995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gollapudi S, Kim C, Tran B et al (1997) Probenecid reverses multidrug resistance in mutidrug resistance-associated prtoein-overexpressing HL60/AR and H69/AR cells but not in P-glycoprotein-overexpressing HL60/Tax and P388/ADR cells. Cancer Chemother Pharmacol 40:150–158

    Article  CAS  PubMed  Google Scholar 

  24. Bakos E, Evers R, Sinkó E et al (2000) Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol 57:760–768

    Article  CAS  PubMed  Google Scholar 

  25. Gekeler V, Ise W, Sanders KH et al (1995) The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem Biophys Res Commun 208:345–352. https://doi.org/10.1006/bbrc.1995.1344

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Schaner ME, Giacomini KM (1998) Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther 286:354–361

    CAS  PubMed  Google Scholar 

  27. Okuda M, Saito H, Urakami Y et al (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    Article  CAS  PubMed  Google Scholar 

  28. Shu Y, Bello CL, Mangravite LM et al (2001) Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in Madin-Darby canine kidney cells. J Pharmacol Exp Ther 299:392–398

    CAS  PubMed  Google Scholar 

  29. Kimura N, Masuda S, Tanihara Y et al (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386

    Article  CAS  PubMed  Google Scholar 

  30. Çetinkaya I, Ciarimboli G, Yalçinkaya G et al (2003) Regulation of human organic cation transporter hOCT2 by PKA, PI3K, and calmodulin-dependent kinases. Am J Physiol Renal Physiol 284:F293–F302. https://doi.org/10.1152/AJPRENAL.00251.2002

    Article  PubMed  Google Scholar 

  31. Ito S, Kusuhara H, Yokochi M et al (2012) Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther 340:393–403. https://doi.org/10.1124/jpet.111.184986

    Article  CAS  PubMed  Google Scholar 

  32. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T (1993) In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53:4595–4602

    CAS  PubMed  Google Scholar 

  33. Tai HL (2000) Technology evaluation: Valspodar, Novartis AG. Curr Opin Mol Ther 2:459–467

    CAS  PubMed  Google Scholar 

  34. Kruijtzer CMF, Beijnen JH, Rosing H et al (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950. https://doi.org/10.1200/JCO.2002.12.116

    Article  CAS  PubMed  Google Scholar 

  35. Allen JD, van Loevezijn A, Lakhai JM et al (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425

    Article  CAS  PubMed  Google Scholar 

  36. Wu W, Baker ME, Eraly SA et al (2009) Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol Genomics 38:116–124. https://doi.org/10.1152/physiolgenomics.90309.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lickteig AJ, Cheng X, Augustine LM et al (2008) Tissue distribution, ontogeny and induction of the transporters Multidrug and toxin extrusion (MATE) 1 and MATE2 mRNA expression levels in mice. Life Sci 83:59–64. https://doi.org/10.1016/j.lfs.2008.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masuda S, Terada T, Yonezawa A et al (2006) Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 17:2127–2135. https://doi.org/10.1681/ASN.2006030205

    Article  CAS  PubMed  Google Scholar 

  39. Harding SD, Sharman JL, Faccenda E et al (2018) The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1121

    Article  PubMed Central  Google Scholar 

  40. Lawrence ML, Chang C-H, Davies JA (2015) Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys. Sci Rep 5:9092. https://doi.org/10.1038/srep09092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sebinger DDR, Unbekandt M, Ganeva VV et al (2010) A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization. PLoS One 5:e10550. https://doi.org/10.1371/journal.pone.0010550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takasato M, Er PX, Chiu HS et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568. https://doi.org/10.1038/nature15695

    Article  CAS  PubMed  Google Scholar 

  43. Tsuda M, Terada T, Mizuno T et al (2009) Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol 75:1280–1286. https://doi.org/10.1124/mol.109.056242

    Article  CAS  PubMed  Google Scholar 

  44. Matsushima S, Maeda K, Inoue K et al (2009) The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine. Drug Metab Dispos 37:555–559. https://doi.org/10.1124/dmd.108.023911

    Article  CAS  PubMed  Google Scholar 

  45. Ciarimboli G, Deuster D, Knief A et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180. https://doi.org/10.2353/ajpath.2010.090610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yasujima T, Ohta K-y, Inoue K et al (2010) Evaluation of 4′,6-diamidino-2-phenylindole as a fluorescent probe substrate for rapid assays of the functionality of human multidrug and toxin extrusion proteins. Drug Metab Dispos 38:715–721. https://doi.org/10.1124/dmd.109.030221

    Article  CAS  PubMed  Google Scholar 

  47. Wilmer MJ, Saleem MA, Masereeuw R et al (2010) Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 339:449–457. https://doi.org/10.1007/s00441-009-0882-y

    Article  PubMed  Google Scholar 

  48. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22:7537–7552. https://doi.org/10.1038/sj.onc.1206953

    Article  CAS  PubMed  Google Scholar 

  49. Allikmets R, Schriml LM, Hutchinson A et al (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:5337–5339

    CAS  PubMed  Google Scholar 

  50. Wang RB, Kuo CL, Lien LL, Lien EJ (2003) Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. J Clin Pharm Ther 28:203–228. https://doi.org/10.1046/j.1365-2710.2003.00487.x

    Article  CAS  PubMed  Google Scholar 

  51. Mikkaichi T, Suzuki T, Onogawa T et al (2004) Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci U S A 101:3569–3574. https://doi.org/10.1073/pnas.0304987101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hughes J, Crowe A (2010) Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics. J Pharmacol Sci 113:315–324

    Article  CAS  PubMed  Google Scholar 

  53. Pavek P, Merino G, Wagenaar E et al (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 312:144–152. https://doi.org/10.1124/jpet.104.073916

    Article  CAS  PubMed  Google Scholar 

  54. Morozova GI, Dobretsov GE, Dubur GI et al (1981) 4-(n-Dimethylaminostyryl)-1-methylpyridinium fluorescence in a living cell. Tsitologiia 23:916–923

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie A. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lawrence, M.L., Elhendawi, M., Davies, J.A. (2019). Investigating Aspects of Renal Physiology and Pharmacology in Organ and Organoid Culture. In: Vainio, S. (eds) Kidney Organogenesis. Methods in Molecular Biology, vol 1926. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9021-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9021-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9020-7

  • Online ISBN: 978-1-4939-9021-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics