Skip to main content
Log in

Error bounds in mathematical programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

Originated from the practical implementation and numerical considerations of iterative methods for solving mathematical programs, the study of error bounds has grown and proliferated in many interesting areas within mathematical programming. This paper gives a comprehensive, state-of-the-art survey of the extensive theory and rich applications of error bounds for inequality and optimization systems and solution sets of equilibrium problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abadie, On the Kuhn-Tucker theorem, in: J. Abadie, ed.,Nonlinear Programming (North-Holland, Amsterdam, 1967) 19–36.

    Google Scholar 

  2. G. Auchmuty, Variational principles for variational inequalities,Numerical Functional Analysis and Optimization 10 (1989) 863–874.

    MathSciNet  MATH  Google Scholar 

  3. A. Auslender,Optimisation: Méthodes Numériques (Masson, Paris, 1976).

    MATH  Google Scholar 

  4. A. Auslender, Convergence of stationary sequences for variational inequalities with maximal monotone operators,Applied Mathematics and Optimization 28 (1993) 161–172.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Auslender, R. Cominetti and J.-P. Crouzeix, Convex functions with unbounded level sets and applications to duality theory,SIAM Journal on Optimization 3 (1993) 669–687.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Auslender and J.P. Crouzeix, Global regularity theorems,Mathematics of Operations Research 13 (1988) 243–253.

    MATH  MathSciNet  Google Scholar 

  7. A. Auslender and J.P. Crouzeix, Well behaved asymptotical convex functions,Analyse Non-linéare (1989) 101–122.

  8. H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems,SIAM Review 38 (1996) 367–426.

    Article  MATH  MathSciNet  Google Scholar 

  9. H.H. Bauschke, J.M. Borwein and A.S. Lewis, The method of cyclic projections for closed convex sets in Hilbert Space, in: Y. Censor and S. Reisch, eds.,Proc. Special Session on Optimization and Nonlinear Analysis, Jerusalem (1995), to appear.

  10. C. Bergthaller and I. Singer, The distance to a polyhedron,Linear Algebra and its Applications 169 (1992) 111–129.

    Article  MATH  MathSciNet  Google Scholar 

  11. D.P. Bertsekas,Nonlinear Programming (Athena Scientific, Massachusetts, 1995).

    MATH  Google Scholar 

  12. D.P. Bertsekas and E. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem,Mathematical Programming Study 12 (1982) 139–159.

    MathSciNet  Google Scholar 

  13. D.P. Bertsekas and P. Tseng, Partial proximal minimization algorithms for convex programming,SIAM Journal on Optimization 4 (1994) 551–572.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Bierstone and P.D. Milman, Semianalytic and subanalytic sets,Institut des Hautes Etudes Scientifiques, Publications Mathématiques 67 (1988) 5–42.

    MATH  MathSciNet  Google Scholar 

  15. J.M. Borwein, Stability and regular points of inequality systems,Journal of Optimization Theory and Applications 48 (1986) 9–52.

    MATH  MathSciNet  Google Scholar 

  16. J.M. Borwein and D.M. Zhang, Verifiable necessary and sufficient conditions for regularity of set-valued and single-valued maps,Journal of Mathematical Analysis and Applications 134 (1988) 441–459.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Boukary and A.V. Fiacco, Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993,Optimization 31 (1995) 301–334.

    Google Scholar 

  18. J.V. Burke, On the identification of active constraints II: The nonconvex case,SIAM Journal on Numerical Analysis 27 (1990) 1081–1102.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.V. Burke, An exact penalization viewpoint of constrained optimization problem,SIAM Journal on Control and Optimization 29 (1991) 968–998.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming,SIAM Journal on Control and Optimization 31 (1993) 1340–1359.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.V. Burke and J.J. Moré, On the identification of active constraints,SIAM Journal on Numerical Analysis 25 (1988) 1197–1211.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.V. Burke and J.J. Moré, Exposing constraints,SIAM Journal on Optimization 4 (1994) 573–595.

    Article  MATH  MathSciNet  Google Scholar 

  23. J.V. Burke and P. Tseng, A unified analysis of Hoffman’s bound via Fenchel duality,SIAM Journal on Optimization 6 (1996) 265–282.

    Article  MATH  MathSciNet  Google Scholar 

  24. C.C. Chou, K.F. Ng, and J.S. Pang, Minimizing and stationary sequences of optimization problems,SIAM Journal on Control and Optimization, revision under review.

  25. F.H. Clarke,Optimization and Nonsmooth Analysis (John Wiley and Sons, New York, 1983).

    MATH  Google Scholar 

  26. W. Cook, A.M.H. Gerards, A. Schrijver and E. Tardös, Sensitivity theorems in integer linear programming,Mathematical Programming 34 (1986) 251–264.

    Article  MATH  MathSciNet  Google Scholar 

  27. R.W. Cottle, J.S. Pang and R.E. Stone,The Linear Complementarity Problem (Academic Press, Boston, MA, 1992).

    MATH  Google Scholar 

  28. J.P. Dedieu, Penalty functions in subanalytic optimization,Optimization 26 (1992) 27–32.

    MATH  MathSciNet  Google Scholar 

  29. S. Deng, Perturbation analysis of a condition number for convex system, Manuscript, Dept. of Mathematics, Northern Illinois University (DeKalb, revised September 1995).

    Google Scholar 

  30. S. Deng, Global error bounds for convex inequality systems in Banach Spaces, Manuscript, Dept. of Mathematics, Northern Illinois University (DeKalb, October 1995).

    Google Scholar 

  31. S. Deng, Computable error bounds for convex inequality systems in reflexive Banach Spaces,SIAM Journal on Optimization 7 (1997) 274–279.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Deng and H. Hu, Computable error bounds for semidefinite programming, Manuscript, Department of Mathematics, Northern Illinois University (DeKalb, revised June 1996).

    Google Scholar 

  33. G. Di Pillo and F. Facchinei, Exact barrier functions methods for Lipschitz programs,Applied Mathematics and Optimization 32 (1995) 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization,SIAM Journal on Control and Optimization 27 (1989) 1333–1360.

    Article  MATH  MathSciNet  Google Scholar 

  35. A.L. Dontchev and R.T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets,SIAM Journal on Optimization 6 (1996) 1087–1105.

    Article  MATH  MathSciNet  Google Scholar 

  36. A.S. Dontchev and T. Zolezzi,Well-Posed Optimization Problems, Lecture Notes in Mathematics, Vol. 1543 (Springer, Berlin, 1991).

    Google Scholar 

  37. J.C. Dunn, Global and asymptotic convergence rate estimates for a class of projected gradient processes,SIAM Journal on Control and Optimization 19 (1981) 368–400.

    Article  MATH  MathSciNet  Google Scholar 

  38. A.S. El-Bakry, R.A. Tapia and Y. Zhang, A study of indicators for identifying zero variables in interior-point methods,SIAM Review 36 (1994) 45–72.

    Article  MATH  MathSciNet  Google Scholar 

  39. I.I. Eremin, The method of penalties in convex programming,Doklady Akademy Nauk. USSR 173 (1967) 748–751.

    MathSciNet  Google Scholar 

  40. F. Facchinei, A. Fischer and C. Kanzow, On the accurate identification of active constraints, Manuscript, Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza, Roma, 1996.

    Google Scholar 

  41. F. Facchinei and S. Lucidi, Convergence to second order stationary points in inequality constrained optimization, manuscript, Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza, Roma, 1996.

    Google Scholar 

  42. M.C. Ferris, Weak sharp minima and penalty functions in mathematical programming, Tech. Rept. 779, Computer Science Dept., University of Wisconsin, Madison, 1988.

    Google Scholar 

  43. M.C. Ferris, Finite termination of the proximal point algorithm,Mathematical Programming 50 (1991) 359–366.

    Article  MATH  MathSciNet  Google Scholar 

  44. M.C. Ferris and O.L. Mangasarian, Minimum principle sufficiency,Mathematical Programming 57 (1992) 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  45. M.C. Ferris and O.L. Mangasarian, Error bounds and strong upper semicontinuity for monotone affine variational inequalities,Annals of Operations Research 47 (1993) 293–305.

    Article  MathSciNet  Google Scholar 

  46. M.C. Ferris and J.S. Pang, Nondegenerate solutions and related concepts in affine variational inequalities,SIAM Journal on Control and Optimization 34 (1996) 244–263.

    Article  MATH  MathSciNet  Google Scholar 

  47. M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems,SIAM Review, to appear.

  48. M.C. Ferris and J.S. Pang, eds.,Complementarity and Variational Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997).

    MATH  Google Scholar 

  49. A. Fischer, A special Newton-type optimization method,Optimization 24 (1992) 269–284.

    MATH  MathSciNet  Google Scholar 

  50. A. Fischer, An NCP-function and its use for the solution of complementarity problems, in: D.Z. Du, L. Qi and R.S. Womersley, eds.,Recent Advances in Nonsmooth Optimization (World Scientific, Singapore, 1995) 88–105.

    Google Scholar 

  51. A. Fischer and C. Kanzow, On finite termination of an iterative method for linear complementarity problems,Mathematical Programming 74 (1996) 279–292.

    Article  MathSciNet  Google Scholar 

  52. M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,Mathematical Programming 53 (1992) 99–110.

    Article  MATH  MathSciNet  Google Scholar 

  53. M. Fukushima, Merit functions for variational inequality and complementarity problems, in: G. Di Pillo and F. Giannessi, eds.,Nonlinear Optimization and Applications (Plenum Press, New York, 1996) 155–170.

    Google Scholar 

  54. M. Fukushima and J.S. Pang, Minimizing and stationary sequences of merit functions for complementarity problems and variational inequalities, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997) 91–104.

    Google Scholar 

  55. S.A. Gabriel and J.S. Pang, An inexact NE/SQP method for solving the nonlinear complementarity problem,Computational Optimization and Applications 1 (1992) 67–92.

    Article  MATH  MathSciNet  Google Scholar 

  56. M.S. Gowda, On the continuity of the solution map in linear complementarity problems,SIAM Journal on Optimization 2 (1992) 619–634.

    Article  MATH  MathSciNet  Google Scholar 

  57. M.S. Gowda, An analysis of zero set and global error bound properties of a piecewise affine function via its recession function,SIAM Journal on Matrix Analysis 17 (1996) 594–609.

    Article  MATH  MathSciNet  Google Scholar 

  58. M.S. Gowda and J.S. Pang, On the boundedness and stability of solutions to the affine variational inequality problem,SIAM Journal on Control and Optimization 32 (1994) 421–441.

    Article  MATH  MathSciNet  Google Scholar 

  59. M.S. Gowda and R. Sznajder, On the Lipschitzian properties of polyhedral multifunctions,Mathematical Programming 74 (1996) 267–278.

    Article  MathSciNet  Google Scholar 

  60. M.S. Gowda and R. Sznajder, On the pseudo-Lipschitzian behavior of the inverse of a piecewise affine function, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997) 117–131.

    Google Scholar 

  61. O. Güler, On the convergence of the proximal point algorithm for convex minimization,SIAM Journal on Control and Optimization 29 (1991) 403–419.

    Article  MATH  MathSciNet  Google Scholar 

  62. O. Güler, A.J. Hoffman and U.G. Rothblum, Approximations to solutions to systems of linear inequalities,SIAM Journal on Matrix Analysis and Applications 16 (1995) 688–696.

    Article  MATH  MathSciNet  Google Scholar 

  63. P.T. Harker and J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,Mathematical Programming 48 (1990) 161–220.

    Article  MATH  MathSciNet  Google Scholar 

  64. D.W. Hearn, The gap function of a convex program,Operations Research Letters 1 (1982) 67–71.

    Article  MATH  MathSciNet  Google Scholar 

  65. A.J. Hoffman, On approximate solutions of systems of linear inequalities,Journal of Research of the National Bureau of Standards 49 (1952) 263–265.

    MathSciNet  Google Scholar 

  66. A. Hoffmann, The distance to the intersection of two convex sets expressed by the distances to each of them,Mathematische Nachrichten 157 (1992) 81–98.

    Article  MATH  MathSciNet  Google Scholar 

  67. L. Hörmander, On the division of distributions by polynomials,Arkiv for Mathematik 3 (1958) 555–568.

    Article  MATH  Google Scholar 

  68. A.N. Iusem, On dual convergence and the rate of primal convergence of Bregman’s convex programming method,SIAM Journal on Optimization 1 (1991) 401–423.

    Article  MATH  MathSciNet  Google Scholar 

  69. A.N. Iusem and M. Teboulle, Convergence rate analysis of nonquadratic proximal methods for convex and linear programming,Mathematics of Operations Research 20 (1995) 657–677.

    MATH  MathSciNet  Google Scholar 

  70. C. Kanzow and M. Fukushima, Equivalence of the generalized complementarity problem to differentiable unconstrained minimization,Journal of Optimization Theory and Applications 90 (1996) 581–603.

    Article  MATH  MathSciNet  Google Scholar 

  71. C. Kanzow, N. Yamashita and M. Fukushima, New NCP-functions and their properties,Journal of Optimization Theory and Applications (1997), to appear.

  72. D. Klatte, Lipschitz stability and Hoffman’s error bounds for convex inequality systems, in:Proc. Conf. on Parametric Optimization and Related Topics IV, Enschede (1995), to appear.

  73. D. Klatte, Hoffman’s error bound for systems of convex inequalities, in: A.V. Fiacco, ed.,Mathematical Programming with Data Perturbations (Marcel Dekker, New York), to appear.

  74. D. Klatte and W. Li, Asymptotic constraint qualifications and global error bounds for convex inequalities, manuscript, Dept. of Mathematics and Statistics, Old Dominion University, Norfolk, 1996.

    Google Scholar 

  75. M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone linear complementarity problem in symmetric matrices,SIAM Journal on Optimization 7 (1997) 86–125.

    Article  MATH  MathSciNet  Google Scholar 

  76. G.M. Korpelevich, The extragradient method for finding saddle points and other problems,Matecon 12 (1976) 747–756.

    MATH  Google Scholar 

  77. B.W. Kort and D.P. Bertsekas, Combined primal-dual and penalty methods for convex programmingSIAM Journal on Control and Optimization 14 (1976) 268–294.

    Article  MATH  MathSciNet  Google Scholar 

  78. B. Lemaire, Bonne position, conditionnement, et bon comportement asymptotique, Exposé No. 5, Seminaire D’Analyse Convexe, Université de Montpellier, Montpellier, 1992.

    Google Scholar 

  79. E.S. Levitin and B.T. Polyak, Convergence of minimizing sequences in conditional extremum problems,Soviet Mathematics Doklady 7 (1966) 764–767.

    MATH  Google Scholar 

  80. A.S. Lewis and J.S. Pang, Error bounds for convex inequality systems, in J.P. Crouzeix, ed.,Proc. 5th Symp. on Generalized Convexity, Luminy-Marseille, (1996), to appear.

  81. W. Li, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program,Linear Algebra and its Applications 187 (1993) 15–40.

    Article  MATH  MathSciNet  Google Scholar 

  82. Wu Li, Remarks on convergence of the matrix splitting algorithm for the symmetric linear complementarity problem,SIAM Journal on Optimization 3 (1993) 155–164.

    Article  MATH  MathSciNet  Google Scholar 

  83. Wu Li, Error bounds for piecewise convex quadratic programs and applications,SIAM Journal on Control and Optimization 33 (1995) 1510–1529.

    Article  MATH  MathSciNet  Google Scholar 

  84. W. Li, Abadie’s constraint qualification, metric regularity and error bounds for differentiable convex inequalities,SIAM Journal on Optimization 7 (1997).

  85. W. Li and I. Singer, Global error bounds for convex multifunctions and applications, Manuscript, Dept. of Mathematics and Statistics, Old Dominion University, Norfolk, 1996.

    Google Scholar 

  86. M.S. Lojasiewicz, Sur le problème de la division,Studia Mathematica 18 (1959) 87–136.

    MATH  MathSciNet  Google Scholar 

  87. A.V. Lotov, An estimate of solution set perturbations for a system of linear inequalities,Optimization Methods and Software 6 (1995) 1–24.

    MathSciNet  Google Scholar 

  88. X.D. Luo and Z.Q. Luo, Extensions of Hoffman’s error bound to polynomial systems,SIAM Journal on Optimization 4 (1994) 383–392.

    Article  MATH  MathSciNet  Google Scholar 

  89. X.D. Luo and P. Tseng, On a global projection-type error bound for the linear complementarity problem,Linear Algebra and its Applications (1996).

  90. Z.Q. Luo, Convergence analysis of primal-dual interior point algorithms for convex quadratic programs, in: R.P. Agarwal, ed.,Recent Trends in Optimization Theory and Applications (World Scientific, Singapore, 1995).

    Google Scholar 

  91. Z.Q. Luo, O.L. Mangasarian, J. Ren and M.V. Solodov, New error bounds for the linear complementarity problem,Mathematics of Operations Research 19 (1994) 880–892.

    MATH  MathSciNet  Google Scholar 

  92. Z.Q. Luo and J.S. Pang, Error bounds for analytic systems and their applications,Mathematical Programming 67 (1994) 1–28.

    Article  MathSciNet  Google Scholar 

  93. Z.Q. Luo, J.S. Pang and D. Ralph,Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge, MA, 1996).

    Google Scholar 

  94. Z.Q. Luo, J.S. Pang, D. Ralph and S.Q. Wu, Exact penalization and stationarity conditions of mathematical programs with equilibrium,Mathematical Programming 75 (1996) 19–76.

    Article  MathSciNet  Google Scholar 

  95. Z.Q. Luo, J.F. Sturm and S.Z. Zhang, Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming, Manuscript, Econometric Institute, Erasmus University, Rotterdam, 1996.

    Google Scholar 

  96. Z.Q. Luo and P. Tseng, On the linear convergence of descent methods for convex essentially smooth minimization,SIAM Journal on Control and Optimization 30 (1992) 408–425.

    Article  MATH  MathSciNet  Google Scholar 

  97. Z.Q. Luo and P. Tseng, On the convergence of coordinate descent method for convex differentiable minimization,Journal of Optimization Theory and Applications 72 (1992) 7–35

    Article  MATH  MathSciNet  Google Scholar 

  98. Z.Q. Luo and P. Tseng, Error bound and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem,SIAM Journal on Optimization 2 (1992) 43–54.

    Article  MATH  MathSciNet  Google Scholar 

  99. Z.Q. Luo and P. Tseng, On the convergence of the affine scaling algorithm,Mathematical Programming 56 (1992) 301–319.

    Article  MathSciNet  Google Scholar 

  100. Z.Q. Luo and P. Tseng, Error bounds and the convergence analysis of feasible descent methods: a general approach,Annals of Operations Research 46 (1993) 157–178.

    Article  MathSciNet  Google Scholar 

  101. Z.Q. Luo and P. Tseng, Error bound and reduced gradient projection algorithms for convex minimization over a polyhedral set,SIAM Journal on Optimization 3 (1993) 43–59.

    Article  MATH  MathSciNet  Google Scholar 

  102. Z.Q. Luo and P. Tseng, On the convergence rate of dual ascent methods for linearly constrained convex minimization,Mathematics of Operations Research (1993) 846–867.

  103. Z.Q. Luo and P. Tseng, Perturbation analysis of a condition number for linear systems,SIAM Journal on Matrix Analysis and Applications 15 (1994) 636–660.

    Article  MATH  MathSciNet  Google Scholar 

  104. Z.Q. Luo and P. Tseng, On the rate of convergence of a distributed asynchronous routing algorithm,IEEE Transactions on Automatic Control 39 (1994) 1123–1129.

    Article  MATH  MathSciNet  Google Scholar 

  105. Z.Q. Luo and P. Tseng, A new class of merit functions for the nonlinear complementarity problem, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, 1997) 204–225.

    Google Scholar 

  106. F.J. Luque, Asymptotic convergence analysis of the proximal point algorithm,SIAM Journal on Control and Optimization 22 (1984) 277–293.

    Article  MATH  MathSciNet  Google Scholar 

  107. O.L. Mangasarian, A condition number of linear inequalities and equalities, in: G. Bamber and O. Optiz, eds.,Proc. 6th Symp. über Operations Research, Universität Augsburg, 1981, Methods of Operations Research, Vol. 43 (Athennäum/Hain/Scriptor/Hanstein, Konigstein, 1981) 3–15.

    Google Scholar 

  108. O.L. Mangasarian, A condition number for differentiable convex inequalities,Mathematics of Operations Research 10 (1985) 175–179.

    MATH  MathSciNet  Google Scholar 

  109. O.L. Mangasarian, Error bounds for nondegenerate monotone linear complementarity problems,Mathematical Programming 48 (1990) 437–445.

    Article  MATH  MathSciNet  Google Scholar 

  110. O.L. Mangasarian, Global error bounds for monotone affine variational inequality problems,Linear Algebra and its Applications 174 (1992) 153–163.

    Article  MATH  MathSciNet  Google Scholar 

  111. O.L. Mangasarian, Error bounds for inconsistent linear inequalities and programs,Operations Research Letters 15 (1994) 187–192.

    Article  MATH  MathSciNet  Google Scholar 

  112. O.L. Mangasarian, Error bounds for nondifferentiable convex inequalities under a strong Slater constraint qualification, Mathematical Programming Tech. Rept. 96-04, Computer Sciences Dept., University of Wisconsin, Madison, 1996.

    Google Scholar 

  113. O.L. Mangasarian, The ill-posed linear complementarity problem, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995, (SIAM Publications, Philadelphia, PA, 1997) 226–233.

    Google Scholar 

  114. O.L. Mangasarian and J.S. Pang, Exact penalty functions for mathematical programs with linear complementarity constraints,Optimization, to appear.

  115. O.L. Mangasarian and J. Ren, New improved error bounds for the linear complementarity problem,Mathematical Programming 66 (1994) 241–257.

    Article  MathSciNet  Google Scholar 

  116. O.L. Mangasarian and T.-H. Shiau, Error bounds for monotone linear complementarity problems,Mathematical Programming 36 (1986) 81–89.

    Article  MATH  MathSciNet  Google Scholar 

  117. O.L. Mangasarian and T.-H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems,SIAM Journal on Control and Optimization 25 (1987) 583–595.

    Article  MATH  MathSciNet  Google Scholar 

  118. O.L. Mangasarian and M.V. Solodov, Nonlinear complementarity as unconstrained and constrained minimization,Mathematical Programming 62 (1993) 277–297.

    Article  MathSciNet  Google Scholar 

  119. R. Mathias and J.S. Pang, Error bounds for the linear complementarity problem with aP-matrix,Linear Algebra and its Applications 132 (1990) 123–136.

    Article  MATH  MathSciNet  Google Scholar 

  120. R.D.C. Monteiro and J.S. Pang, On two interior-point mappings for nonlinear semidefinite complementarity problems, Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, 1996.

    Google Scholar 

  121. R.D.C. Monteiro and J.S. Pang, A potential reduction Newton method for constrained equations, Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, 1997.

    Google Scholar 

  122. R.D.C. Monteiro and T. Tsuchiya, Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem,Mathematics of Operations Research 21 (1996) 793–814.

    MATH  MathSciNet  Google Scholar 

  123. R.D.C. Monteiro and S.J. Wright, Local convergence of interior-point algorithms for degenerate monotone LCP,Computational Optimization and Applications 3 (1994) 131–156.

    Article  MATH  MathSciNet  Google Scholar 

  124. B. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties,Transactions of the American Mathematical Society 340 (1993) 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  125. G.S.R. Murthy, T. Parthasarathy and M. Sabatini, LipschitzianQ-matrices areP-matrices,Mathematical Programming 74 (1996) 55–58.

    MathSciNet  Google Scholar 

  126. A.M. Odlyzko, Asymptotic enumeration methods, in: R.L. Graham, M. Grötschel and L. Lovász, eds.,Handbook of Combinatorics (The MIT Press, North-Holland, Cambridge, 1995), Chapter 22, 1063–1230.

    Google Scholar 

  127. J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    MATH  Google Scholar 

  128. J.S. Pang, Inexact Newton methods for the nonlinear complementarity problems,Mathematical Programming 36 (1986) 54–71.

    Article  MATH  MathSciNet  Google Scholar 

  129. J.S. Pang, A posteriori error bound for the linearly-constrained variational inequality problem,Mathematics of Operations Research 12 (1987) 474–484.

    MathSciNet  Google Scholar 

  130. J.S. Pang, Complementarity problems, chapter in: R. Horst and P. Pardalos, eds.,Handbook of Global Optimization (Kluwer Academic Publishers, Dordrecht, 1995) 271–338

    Google Scholar 

  131. J.S. Pang and S.A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complementarity problem,Mathematical Programming 60 (1993) 295–338.

    Article  MathSciNet  Google Scholar 

  132. J.S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps,Mathematics of Operations Research 21 (1996) 401–426.

    MATH  MathSciNet  Google Scholar 

  133. J.S. Pang and J.M. Yang, Two-stage parallel iterative methods for the symmetric linear complementarity problem,Annals of Operations Research 14 (1988) 61–75.

    Article  MATH  MathSciNet  Google Scholar 

  134. J.M. Peng, Equivalence of variational inequality problems to unconstrained optimization, Tech. Rept., State Key Laboratory of Scientific and Engineering Computing, Academia Sinica, Beijing, 1995.

    Google Scholar 

  135. J.P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions,Nonlinear Analysis, Theory, Methods and Applications 13 (1989) 629–643.

    Article  MATH  MathSciNet  Google Scholar 

  136. D. Ralph, A new proof of Robinson’s homeomorphism theorem for piecewise linear maps,Linear Algebra and its Applications 178 (1993) 249–260.

    Article  MATH  MathSciNet  Google Scholar 

  137. S.M. Robinson, An application of error bounds for convex programming in a linear space,SIAM Journal on Control 13 (1975) 271–273.

    Article  MATH  Google Scholar 

  138. S.M. Robinson, Regularity and stability for convex multivalued functions,Mathematics of Operations Research 1 (1976) 130–143.

    MATH  MathSciNet  Google Scholar 

  139. S.M. Robinson, Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems,SIAM Journal on Numerical Analysis 13 (1976) 497–513.

    Article  MATH  MathSciNet  Google Scholar 

  140. S.M. Robinson, Strongly regular generalized equations,Mathematics of Operations Research 5 (1980) 43–62.

    MATH  MathSciNet  Google Scholar 

  141. S.M. Robinson, Some continuity properties of polyhedral multifunction,Mathematical Programming Study 14 (1981) 206–214.

    MATH  Google Scholar 

  142. S.M. Robinson, Normal maps induced by linear transformations,Mathematics of Operations Research 16 (1992) 292–309.

    Google Scholar 

  143. S.M. Robinson, Homeomorphism conditions for normal maps of polyhedra, in: A. Ioffe, M. Marcus and S. Reich, eds.,Optimization and Nonlinear Analysis (Longman, London, 1992) 691–714.

    Google Scholar 

  144. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  145. H. Scheel and S. Scholtes, Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity, Manuscript, Dept. of Engineering, University of Cambridge, Cambridge, 1996.

    Google Scholar 

  146. S. Scholtes, Introduction to piecewise differentiable equations, Habilitation Thesis, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Karlsruhe, 1994.

    Google Scholar 

  147. S. Scholtes, Homeomorphism conditions for coherently oriented piecewise affine mappings, Research Rept., Institut für Statistik unde Mathematische Wirtschaftstheorie, Universität Karlsruhe, Karlsruhe, 1994.

    Google Scholar 

  148. S. Scholtes and M. Stöhr, Exact penalisation of mathematical programs with equilibrium constraints, Manuscript, Institut für Statistik und Mathematische, Universität Karlsruhe, Karlsruhe, 1996.

    Google Scholar 

  149. R.E. Stone, Lipschitzian matrices are nondegenerate INS-matrices, in: M.C. Ferris and J.S. Pang, eds.,Complementarity and Variational Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997) 440–451.

    Google Scholar 

  150. J.F. Sturm, Superlinear convergence of an algorithm for monotone linear complementarity problems when no strictly complementary solution exists, Manuscript, Econometric Institute, Erasmus University Rotterdam, Rotterdam, 1996.

    Google Scholar 

  151. R. Sznajder and M.S. Gowda, Nondegeneracy concepts for zeros of piecewise smooth functions, Mathematics of Operations Research, to appear.

  152. K. Taji, M. Fukushima and T. Ibaraki, A globally convergent Newton method for solving strongly monotone variational inequalities,Mathematical Programming 58 (1993) 369–383.

    Article  MathSciNet  Google Scholar 

  153. P. Tseng, On the rate of convergence of a partially asynchronous gradient projection algorithm,SIAM Journal on Optimization 1 (1991) 603–319.

    Article  MATH  MathSciNet  Google Scholar 

  154. P. Tseng, On linear convergence of iterative methods for the variational inequality problem,Journal of Computational and Applied Mathematics 60 (1995) 237–252.

    Article  MATH  MathSciNet  Google Scholar 

  155. C. Ursescu, Multifunctions with closed convex graph,Czechoslovak Mathematics Journal 25 (1975) 438–441.

    MathSciNet  Google Scholar 

  156. D.W. Walkup and R.J.B. Wets, A Lipschitzian characterization of convex polyhedra,Proceedings of the American Mathematical Society 20 (1969) 167–173.

    Article  MathSciNet  Google Scholar 

  157. T. Wang and J.S. Pang, Global error bounds for convex quadratic inequality systems,Optimization 31 (1994) 1–12.

    MATH  MathSciNet  Google Scholar 

  158. J. Warga, A necessary and sufficient condition for a constrained minimum,SIAM Journal on Optimization 2 (1992) 665–667.

    Article  MATH  MathSciNet  Google Scholar 

  159. S.J. Wright, Identifiable surfaces in constrained optimization,SIAM Journal on Control and Optimization 31 (1993) 1063–1079.

    Article  MATH  MathSciNet  Google Scholar 

  160. N. Yamashita and M. Fukushima, Equivalent unconstrained minimization and global error bounds for variational inequality problems,SIAM Journal on Control and Optimization 35 (1997) 273–284.

    Article  MATH  MathSciNet  Google Scholar 

  161. N. Yamashita, K. Taji and M. Fukushima, Unconstrained optimization reformulations of variational inequality problems,Journal of Optimization Theory and Applications 92 (1997) 439–456.

    Article  MATH  MathSciNet  Google Scholar 

  162. Y. Ye, A further result on the potential reduction algorithm for theP-matrix linear complementarity problem, in: P. Pardalos ed.,Advances in Optimization and Parallel Computing (North-Holland, New York, 1992) 310–316.

    Google Scholar 

  163. W.I. Zangwill, Non-linear programming via penalty functions,Management Science 13 (1967) 344–358.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is based on research supported by the U.S. National Science Foundation under grant CCR-9624018.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, JS. Error bounds in mathematical programming. Mathematical Programming 79, 299–332 (1997). https://doi.org/10.1007/BF02614322

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614322

Keywords

Navigation