Skip to main content
Log in

Sensitivity theorems in integer linear programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider integer linear programming problems with a fixed coefficient matrix and varying objective function and right-hand-side vector. Among our results, we show that, for any optimal solution to a linear program max{wx: Ax≤b}, the distance to the nearest optimal solution to the corresponding integer program is at most the dimension of the problem multiplied by the largest subdeterminant of the integral matrixA. Using this, we strengthen several integer programming ‘proximity’ results of Blair and Jeroslow; Graver; and Wolsey. We also show that the Chvátal rank of a polyhedron {x: Ax≤b} can be bounded above by a function of the matrixA, independent of the vectorb, a result which, as Blair observed, is equivalent to Blair and Jeroslow's theorem that ‘each integer programming value function is a Gomory function.’

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Blair and R.G. Jeroslow, “The value function of a mixed integer program: I“,Discrete Mathematics 19 (1977) 121–138.

    Google Scholar 

  2. C.E. Blair and R.G. Jeroslow, “The value function of a mixed integer program: II“,Discrete Mathematics 25 (1979) 7–19.

    Google Scholar 

  3. C.E. Blair and R.G. Jeroslow, “The value function of an integer program“,Mathematical Programming 23 (1982) 237–273.

    Google Scholar 

  4. S.C. Boyd and W.R. Pulleyblank, “Facet generating techniques”, in preparation.

  5. V. Chvátal, “Edmonds polytopes and a hierarchy of combinatorial problems“,Discrete Mathematics 4 (1973) 305–337.

    Google Scholar 

  6. V. Chvátal, “Edmonds polytopes and weakly hamiltonian graphs“,Mathematical Programming 5 (1973) 29–40.

    Google Scholar 

  7. V. Chvátal, “Cutting-plane proofs and the stability number of a graph”, Report No. 84326-OR, Institut für Ökonometrie und Operations Research, Universität Bonn, FR Germany, 1984.

  8. W. Cook, C. Coullard and Gy. Turán, “On the complexity of cutting-plane proofs”, in preparation.

  9. J. Edmonds and E.L. Johnson, “Matching: a well-solved class of integer linear programs“, in: R.K. Guy, et al., eds.,Combinatorial structures and their applications (Gordon and Breach, New York, 1970) pp. 89–92.

    Google Scholar 

  10. J. von zur Gathen and M. Sieveking, “A bound on solutions of linear integer equalities and inequalities“,Proceedings of the American Mathematical Society 72 (1978) 155–158.

    Google Scholar 

  11. A.M.H. Gerards and A. Schrijver, “Matrices with the Edmonds-Johnson property”, to appear.

  12. F.R. Giles and W.R. Pulleyblank, “Total dual integrality and integer polyhedra“,Linear Algebra and its Applications 25 (1979) 191–196.

    Google Scholar 

  13. R.E. Gomory, “An algorithm for integer solutions to linear programs“, in: R.L. Graves and P. Wolfe (eds.), Recent advances in mathematical programming (McGraw-Hill, New York, 1963) pp. 269–302.

    Google Scholar 

  14. R.E. Gomory, “On the relation between integer and noninteger solutions to linear programs“,Proceedings of the National Academy of Science 53 (1965) 260–265.

    Google Scholar 

  15. R.E. Gomory, “Some polyhedra related to combinatorial problems“,Linear Algebra and its Applications 2 (1969) 451–558.

    Google Scholar 

  16. J.E. Graver, “On the foundations of linear and integer linear programming I“,Mathematical Programming 8 (1975) 207–226.

    Google Scholar 

  17. M. Grötschel, L. Lovász and A. Schrijver, “Geometric methods in combinatorial optimization“, in: W.R. Pulleyblank, ed.,Progress in combinatorial optimization (Academic Press, New York, 1984) pp. 167–183.

    Google Scholar 

  18. M. Grötschel, L. Lovász and A. Schrijver,The ellipsoid method and combinatorial optimization (Springer-Verlag, Berlin), to appear.

  19. A.J. Hoffman, “On approximate solutions of systems of linear inequalities“,Journal of Research of the National Bureau of Standards 49 (1952) 263–265.

    Google Scholar 

  20. A.J. Hoffman and J.B. Kruskal, “Integral boundary points of convex polyhedra“, in: H.W. Kuhn and A.W. Tucker, eds.,Linear inequalities and related systems, Annals of Mathematics Study 38 (Princeton University Press, Princeton, 1956) pp. 223–247.

    Google Scholar 

  21. R.M. Karp and C.H. Papadimitriou, “On linear characterizations of combinatorial optimization problems“,SIAM Journal on Computing 11 (1982) 620–632.

    Google Scholar 

  22. H.W. Lenstra, “Integer programming with a fixed number of variables“,Mathematics of Operations Research 8 (1983) 538–548.

    Google Scholar 

  23. O.L. Mangasarian, “A condition number for linear inequalities and linear programs“, in: G. Bamberg and O. Opitz, eds.,Proc. of 6th Symposium über Operations Research, Universität Augsburg, September 7–9 (1981) (Verlagsgruppe Athenäum/Hain/Scriptor/Hanstein, Königstein, 1981) pp. 3–15.

    Google Scholar 

  24. A. Schrijver, “On cutting planes“,Annals of Discrete Mathematics 9 (1980) 291–296.

    Google Scholar 

  25. A. Schrijver, “On total dual integrality“,Linear Algebra and its Applications 38 (1981) 27–32.

    Google Scholar 

  26. A. Schrijver,Theory of linear and integer programming (Wiley, Chichester, 1986).

    Google Scholar 

  27. J. Stoer and C. Witzgall,Convexity and optimization in finite dimensions I (Springer-Verlag, Berlin, 1970).

    Google Scholar 

  28. L.A. Wolsey, “Theb-hull of an integer program“,Discreet Applied Mathematics 3 (1981) 193–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the Alexander von Humboldt Stiftung.

Since September 1985: Department of Operations Research, Upson Hall, Cornell University, Ithaca, NY 14853, USA.

Partially supported by the Sonderforschungbereich 21 (DFG), Institut für Ökonometrie und Operations Research of the University of Bonn, FR Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, W., Gerards, A.M.H., Schrijver, A. et al. Sensitivity theorems in integer linear programming. Mathematical Programming 34, 251–264 (1986). https://doi.org/10.1007/BF01582230

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01582230

Key words

Navigation