Skip to main content
Log in

Barium blocks cell membrane and tight junction conductances inNecturus gallbladder epithelium

Experiments with an extended impedance analysis technique

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The site and concentration dependence of the blocking effect of Ba2+ onNecturus gallbladder epithelium has been investigated. A new approach was used which combines time-dependent electrical cell coupling analysis with intermittently performed measurements of transepithelial and apparent intracellular impedance. From the coupling pulse data the sum of apical and basolateral membrane conductances is obtained, which is then held constant during fitting of the impedance data. This combination technique yields more reliable estimates of apical and basolateral membranes resistances (R a,R bl) and of tight junction resistance (R j) than our previous impedance analysis technique. Using the new approach we have found that luminal Ba2+ concentrations between 0.5 and 1.0 mmol/l increaseR a with saturation-type kinetics without affectingR bl andR j, while higher luminal Ba2+ concentrations progressively increaseR j. Corresponding effects were observed under serosal Ba2+. The results validate the new impedance analysis approach and demonstrate that millimolar concentrations of Ba2+ block tight junction conductances. Accordingly, Ba2+ can no longer be considered a tool to exclusively alter cell membrane resistances in epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry PH (1977) Transport number effects in the transverse tubular system and their implications for low frequency impedance measurement of capacitance of skeletal muscle fibers. J Membr Biol 34:383–408

    Article  PubMed  CAS  Google Scholar 

  2. Bello-Reuss E (1986) Cell membranes and paracellular resistances in isolated renal proximal tubules from rabbit andAmbystoma. J Physiol (Lond) 370:25–38

    CAS  Google Scholar 

  3. Erlij D, Van Driessche W, De Wolf I (1986) Oxytocin stimulates the apical K+ conductance in frog skin. Pflügers Arch 407:602–606

    Article  PubMed  CAS  Google Scholar 

  4. Fromm M, Schultz SG (1981) Potassium transport across rabbit descending colon in vitro. J Membr Biol 63:93–98

    Article  PubMed  CAS  Google Scholar 

  5. Frömter E (1972) The route of passive ion movement through the epithelium ofNecturus gallbladder. J Membr Biol 8:259–301

    Article  PubMed  Google Scholar 

  6. Garcia-Diaz JF, Nagel W, Essig A (1983) Voltage-dependent K conductance at the apical membrane ofNecturus gallbladder. Biophys J 43:269–278

    Article  PubMed  CAS  Google Scholar 

  7. Gögelein H, Van Driessche W (1981) Noise analysis of the K+ current through the apical membrane ofNecturus gallbladder. J Membr Biol 60:187–198

    Article  PubMed  Google Scholar 

  8. Gordon LGM, Kottra G, Frömter E (1989) Electrical impedance analysis of leaky epithelia with special reference to leak artifact problems. Methods Enzymol 171:642–663

    Article  PubMed  CAS  Google Scholar 

  9. Greger R, Schlatter E (1983) Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflügers Arch 396:315–324

    Article  PubMed  CAS  Google Scholar 

  10. Hagiwara S, Miyazaki S, Moody W, Patlak J (1978) Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol (Lond) 279:167–185

    CAS  Google Scholar 

  11. Hamilton WC (1964) Statistics in physical science. Estimation, hypothesis testing and least squares. Ronald Company, New York

    Google Scholar 

  12. Kottra G, Frömter E (1982) A simple method for constructing shielded, low-capacitance glass microelectrodes. Pflügers Arch 395:156–158

    Article  PubMed  CAS  Google Scholar 

  13. Kottra G, Frömter E (1984) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures. Pflügers Arch 402:409–420

    Article  PubMed  CAS  Google Scholar 

  14. Kottra G, Frömter E (1984) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results. Pflügers Arch 402:421–432

    Article  PubMed  CAS  Google Scholar 

  15. Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membr Biol 71:11–30

    Article  PubMed  CAS  Google Scholar 

  16. Machen TE, Erlij D, Wooding FBP (1972) Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol 54:302–312

    Article  PubMed  CAS  Google Scholar 

  17. Moreno JH, Diamond JM (1975) Cation permeation mechanisms and cation selectivity in “tight junctions” of gallbladder epithelium. In: Eisenman G (ed) Membranes, a series of advances. Dekker, New York, pp 383–497

    Google Scholar 

  18. Nagel W (1979) Inhibition of potassium conductance by barium in frog skin epithelium. Biochim Biophys Acta 552:346–357

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen R (1986) The presence of Ba2+ sensitive and Ba2+ insensitive K+ channels in isolated frog skin. Renal Physiol 9:92

    Google Scholar 

  20. O'Neil RG, Sansom SC (1984) Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol 82:281–295

    Article  PubMed  Google Scholar 

  21. Palant CE, Duffey ME, Mookerjee BK, Ho S, Bentzel CJ (1983) Ca2+ regulation of tight-junction permeability and structure inNecturus gallbladder. Am J Physiol 245:C203-C212

    PubMed  CAS  Google Scholar 

  22. Palmer LG (1986) Apical membrane K conductance in the toad urinary bladder. J Membr Biol 92:217–226

    Article  PubMed  CAS  Google Scholar 

  23. Reuss L (1979) Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. III. Ionic permeability of the basolateral cell membrane. J Membr Biol 47:239–259

    Article  PubMed  CAS  Google Scholar 

  24. Reuss L, Finn AL (1974) Passive electrical properties of toad urinary bladder epithelium. J Gen Physiol 64:1–25

    Article  PubMed  CAS  Google Scholar 

  25. Reuss L, Finn AL (1975) Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol 25:141–161

    Article  PubMed  CAS  Google Scholar 

  26. Reuss L, Cheung LY, Grady TP (1981) Mechanisms of cation permeation across apical cell membrane ofNecturus gallbladder: effects of luminal pH and divalent cations on K+ and Na+ permeability. J Membr Biol 59:211–224

    Article  PubMed  CAS  Google Scholar 

  27. Salas PJI, Moreno JH (1982) Single-file diffusion multi-ion mechanism of permeation in paracellular epithelial channels. J Membr Biol 64:103–112

    Article  PubMed  CAS  Google Scholar 

  28. Schuster VE, Stokes JB (1987) Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol 253:F203-F212

    PubMed  CAS  Google Scholar 

  29. Siegenbeek van Heukelom J, Denier van der Gon JJ, Prop FJA (1972) Model approaches for evaluation of cell coupling in monolayers. J Membr Biol 7:88–110

    Article  Google Scholar 

  30. Suzuki K, Frömter E (1977) The potential and resistance profile ofNecturus gallbladder cells. Pflügers Arch 371:109–117

    Article  PubMed  CAS  Google Scholar 

  31. Welsh MJ (1983) Barium inhibition of basolateral membrane potassium conductance in tracheal epithelium. Am J Physiol 244:F639-F645

    PubMed  CAS  Google Scholar 

  32. Werman R, McCann FV, Grundfest H (1961) Graded and all-or-none electrogenesis in arthropod muscle. I. The effects of alkali earth cations on the neuromuscular system ofRomalea microptera. J Gen Physiol 44:979–995

    Article  PubMed  CAS  Google Scholar 

  33. Wills NK, Zeiske W, Van Driessche W (1982) Noise analysis reveals K+ channel conductance fluctuations in the apical membrane of rabbit colon. J Membr Biol 69:187–197

    Article  PubMed  CAS  Google Scholar 

  34. Wright EM, Diamond JM (1968) Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions. Biochim Biophys Acta 163:57–74

    Article  PubMed  CAS  Google Scholar 

  35. Wright EM, Barry PH, Diamond JM (1971) The mechanism of cation permeation in rabbit gallbladder. Conductances, the current-voltage relation, the concentration dependence of anion-cation discrimination, and the calcium competition effect. J Membr Biol 4:331–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kottra, G., Frömter, E. Barium blocks cell membrane and tight junction conductances inNecturus gallbladder epithelium. Pflugers Arch. 415, 718–725 (1990). https://doi.org/10.1007/BF02584011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584011

Key words

Navigation