Skip to main content
Log in

Parenteral Lipid Emulsions in Guinea Pigs Differentially Influence Plasma and Tissue Levels of Fatty Acids, Squalene, Cholesterol, and Phytosterols

  • Original Article
  • Published:
Lipids

Abstract

Lipid emulsions are made by mixing vegetable and/or fish oils with egg yolk and contain different types and amounts of fatty acids and sterols. This study assessed the effects of oral diet, soybean oil (SO)-, fish oil (FO)-, a mixture of olive and soybean oil (OOSO)-, and a mixture of fish, olive, coconut, and soybean oil (FOCS)-based emulsions on plasma triacylglycerols and plasma and tissue fatty acid and sterol content following acute and chronic intravenous administration in the guinea pig. Upon acute administration, peak triacylglycerols were highest with SO and lowest with OOSO. Upon chronic administration, the plasma triglyceride levels did not increase in any group over that of the controls. Fatty acid levels varied greatly between organs of animals on the control diets and organs of animals following acute or chronic lipid administration. Squalene levels increased in plasma following acute administration of OOSO, but plasma squalene levels were similar to control in all emulsion groups following chronic administration. Total plasma phytosterol levels were increased in the SO, OOSO, and FOCS groups following both acute and chronic infusions, whereas phytosterols were not increased following FO infusion. Total phytosterol levels were higher in liver, lung, kidney and adipose tissue following SO and OOSO. Levels were not increased in tissues after FO and FOCS infusion. These results indicate that fatty acid and sterol contents vary greatly among organs and that no one tissue reflects the fatty acid or sterol composition of other tissues, suggesting that different organs regulate these compounds differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

CO:

Coconut oil

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

EPA:

Eicosapentaenoic acid

FO:

Fish oil emulsion

FOCS:

Fish, olive, coconut and soybean oils emulsion

OOSO:

Olive and soybean oils emulsion

GC:

Gas chromatography

HDL-C:

High density lipoprotein-cholesterol

LCT:

Long-chain triacylglycerols

LDL-C:

Low density lipoproteins-Cholesterol

LDL-R:

Low density lipoprotein receptor

LE:

Lipid emulsion

LPL:

Lipoprotein lipase

MCT:

Medium chain triacylglycerols

PUFA:

Polyunsaturated fatty acids

PNALD:

Parenteral-nutrition associated liver disease

RBC:

Red blood cells

SO:

Soybean oil emulsion

TG:

Triacylglycerols

References

  1. Rustan AC, Drevon CA (2005) Fatty acids: Structures and properties. In: Encyclopedia of life sciences. John Wiley, pp 1-7

  2. Gurr M, Harwood J, Frayn K (1989) Lipid biochemistry: an introduction. 5th edn. Blackwell Science, Oxford, UK

  3. Xu Z, Harvey K, Pavlina T, Dutot G, Zaloga G, Siddiqui R (2011) An improved method for determining medium- and long-chain FAMEs using gas chromatography. Lipids 45:199–208

    Article  Google Scholar 

  4. Xu Z, Harvey KA, Pavlina T, Dutot G, Hise M, Zaloga GP, Siddiqui RA (2012) Steroidal compounds in commercial parenteral lipid emulsions. Nutrients 4:904–921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ostlund RE Jr (2002) Phytosterols in human nutrition. Annu Rev Nutr 22:533–549

    Article  CAS  PubMed  Google Scholar 

  6. Subbiah MT (1973) Dietary plant sterols: current status in human and animal sterol metabolism. Am J Clin Nutr 26:219–225

    CAS  PubMed  Google Scholar 

  7. Salen G, Ahrens EH Jr, Grundy SM (1970) Metabolism of beta-sitosterol in man. J Clin Invest 49:952–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. El Kasmi KC, Anderson A, Devereaux MW, Noe MS, Sokol RJ (2011) Soy lipid-derived phytosterols are responsible for parenteral nutrition associated liver injury (PNALI) in a mouse model. Hepatology 54(suppl):412A

    Google Scholar 

  9. Iyer KR, Spitz L, Clayton P (1998) New insight into mechanisms of parental nutrition-associated cholestasis: role of plant sterols. Journal of Pediatric Surgery 33:1–6

    Article  CAS  PubMed  Google Scholar 

  10. Carter BA, Taylor OA, Prendergast DR, Zimmerman TL, Von Furstenberg R, Moore DD, Karpen SJ (2007) Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res 62:301–306

    Article  CAS  PubMed  Google Scholar 

  11. Shefer S, Salen G, Nguyen L, Batta AK, Packin V, Tint GS, Hauser S (1988) Competitive inhibition of bile acid synthesis by endogenous cholestanol and sitosterol in sitosterolemia with xanthomatosis. Effect on cholesterol 7 alpha-hydroxylase. J Clin Invest 82:1833–1839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Boberg KM, Akerlund JE, Bjorkhem I (1989) Effect of sitosterol on the rate-limiting enzymes in cholesterol synthesis and degradation. Lipids 24:9–12

    Article  CAS  PubMed  Google Scholar 

  13. Clayton PT, Whitfield P, Iyer K (1998) The role of phytosterols in the pathogenesis of liver complications of pediatric parenteral nutrition. Nutrition 14:158–164

    Article  CAS  PubMed  Google Scholar 

  14. Kelly DA (2010) Preventing parenteral nutrition liver disease. Early Hum Dev 86:683–687

    Article  CAS  PubMed  Google Scholar 

  15. Clayton PT, Bowron A, Mills KA, Massoud A, Casteels M, Milla PJ (1993) Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 105:1806–1813

    CAS  PubMed  Google Scholar 

  16. Ellegard L, Sunesson A, Bosaeus I (2005) High serum phytosterol levels in short bowel patients on parenteral nutrition support. Clin Nutr 24:415–420

    Article  CAS  PubMed  Google Scholar 

  17. Llop JM, Virgili N, Moreno-Villares JM, Garcia-Peris P, Serrano T, Forga M, Solanich J, Pita AM (2008) Phytosterolemia in parenteral nutrition patients: implications for liver disease development. Nutrition 24:1145–1152

    Article  CAS  PubMed  Google Scholar 

  18. Clinolipid (lipid injectable emulsion, USP), 20 % - Accessdata FDA. WWW.accessdata.fda.gov

  19. Team RDC (2008) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  20. Hallikainen M, Huikko L, Kontra K, Nissinen M, Piironen V, Miettinen T, Gylling H (2008) Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome. Nutr Clin Pract 23:429–435

    Article  PubMed  Google Scholar 

  21. Dimakou K, Guillotte C, Hill S Phytosterols of HPN patients. In: The 34th ESPEN Congress, Barcelona, Spain, 2012. Clinical Nutrition Supplements, p 135

  22. Beale EF, Nelson RM, Bucciarelli RL, Donnelly WH, Eitzman DV (1979) Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 64:342–347

    CAS  PubMed  Google Scholar 

  23. Van Aerde JE, Duerksen DR, Gramlich L, Meddings JB, Chan G, Thomson AB, Clandinin MT (1999) Intravenous fish oil emulsion attenuates total parenteral nutrition-induced cholestasis in newborn piglets. Pediatr Res 45:202–208

    Article  PubMed  Google Scholar 

  24. Nehra D, Fallon EM, Puder M (2011) The prevention and treatment of intestinal failure-associated liver disease in neonates and children. Surg Clin North Am 91:543–563

    Article  PubMed  Google Scholar 

  25. Cober MP, Killu G, Brattain A, Welch KB, Kunisaki SM, Teitelbaum DH (2012) Intravenous fat emulsions reduction for patients with parenteral nutrition-associated liver disease. J Pediatr 160:421–427

    Article  CAS  PubMed  Google Scholar 

  26. Allardyce DB (1982) Cholestasis caused by lipid emulsions. Surg Gynecol Obstet 154:641–647

    CAS  PubMed  Google Scholar 

  27. Cavicchi M, Beau P, Crenn P, Degott C, Messing B (2000) Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med 132:525–532

    Article  CAS  PubMed  Google Scholar 

  28. Puder M, Valim C, Meisel JA, Le HD, de Meijer VE, Robinson EM, Zhou J, Duggan C, Gura KM (2009) Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann Surg 250:395–402

    PubMed Central  PubMed  Google Scholar 

  29. Fernandez ML (2001) Guinea pigs as models for cholesterol and lipoprotein metabolism. J Nutr 131:10–20

    CAS  PubMed  Google Scholar 

  30. Olivecrona T, Bengsston-Olivecrona G (1993) Lipoprotein lipase and hepatic lipase. Curr Opin Lipidiol 4:187–196

    Article  CAS  Google Scholar 

  31. Fernandez ML, Yount NY, McNamara DJ (1990) Whole body and hepatic cholesterol synthesis rates in the guinea-pig: effect of dietary fat quality. Biochim Biophys Acta 1044:340–348

    Article  CAS  PubMed  Google Scholar 

  32. Angelin B, Olivecrona H, Reihner E, Rudling M, Stahlberg D, Eriksson M, Ewerth S, Henriksson P, Einarsson K (1992) Hepatic cholesterol metabolism in estrogen-treated men. Gastroenterology 103:1657–1663

    CAS  PubMed  Google Scholar 

  33. McNamara DJ, Ensign W, Montano C, D.M. S, Soscia A (1993) Exercise and plasma lipoproteins in the guinea pig. Faseb J:A869

  34. Hidaka K, Takada Y, Matsunaga A, Sasaki J, Arakawa K (1992) Effects of probucol on low-density lipoprotein catabolism in guinea pigs. Artery 19:162–176

    CAS  PubMed  Google Scholar 

  35. Berglund L, Sharkey MF, Elam RL, Witztum JL (1989) Effects of lovastatin therapy on guinea pig low density lipoprotein composition and metabolism. J Lipid Res 30:1591–1600

    CAS  PubMed  Google Scholar 

  36. Suckow MA, Stevens KA, Wilson RP (2012) The laboratory rabbit, guinea pig, hamster, and other rodents. Academic Press, Salt Lake City, UT

Download references

Acknowledgments

The authors wish to thank Elaine Bammerlin for providing editorial assistance and Dr. Cary Mariash for the statistical analysis of data. This study was supported by a grant from Baxter Healthcare Corporation, Deerfield, IL 60015, USA.

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafat Siddiqui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, K., Xu, Z., Walker, C. et al. Parenteral Lipid Emulsions in Guinea Pigs Differentially Influence Plasma and Tissue Levels of Fatty Acids, Squalene, Cholesterol, and Phytosterols. Lipids 49, 777–793 (2014). https://doi.org/10.1007/s11745-014-3927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3927-2

Keywords

Navigation