Skip to main content
Log in

Oral administration of lipid oil-in-water emulsions performed with synthetic or protein-type emulsifiers differentially affects post-prandial triacylglycerolemia in rats

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we compared the impact of administration of size-calibrated lipid emulsions prepared with either synthetic or natural emulsifiers on the post-absorptive plasma triacylglycerol responses in rats. We did this using four types of size-calibrated (10 μm diameter) and metastable (3 days) emulsions with 20% of an oleic acid-rich sunflower oil and 1% of either synthetic emulsifiers (Tween 80 or sodium 2-stearoyl-lactylate) or two proteins (β-lactoglobulin or sodium caseinate). An oral fat tolerance test was performed in fasted rats by oral administration of each of these formulations in continuous or emulsified forms. Kinetic parameters (AUC0-inf., AUC0-6h, Cmax, Tmax, and T1/2) for the description of the plasma triacylglycerol responses were calculated. AUC0-6h and AUC0-inf. calculated for the protein groups were significantly lower than those of the control and the synthetic groups. These lower values were associated with significant decreases in the Cmax, exacerbated by the emulsion form and with marked decreases in the Tmax as compared to the control group. T1/2 values were differentially affected by the lipid administration forms and by the nature of the emulsifiers. As compared with the control group, T1/2 was largely increased in the sodium stearoyl-2-lactylate group, but on the contrary, largely lowered in the casein group. We concluded that the use of proteins as natural emulsifiers in lipid emulsions decreased the magnitude of post-prandial triacylglycerolemia for the same amount of ingested lipids, when the emulsion size is controlled for. Proteins could be a promising alternative to the widespread use of synthetic emulsifiers in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, Salducci J, Portugal H, Jaussan V, Lairon D (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70:1096–1106. https://doi.org/10.1093/ajcn/70.6.1096

    Article  CAS  PubMed  Google Scholar 

  2. Beaumont M, Jaoui D, Douard V, Mat D, Koeth F, Goustard B, Mayeur C, Mondot S, Hovaghimian A, Le Feunteun S, et al. (2017) Structure of protein emulsion in food impacts intestinal microbiota, caecal luminal content composition and distal intestine characteristics in rats. Mol Nutr Food Res 61 https://doi.org/10.1002/mnfr.201700078

    Article  Google Scholar 

  3. Borel P, Armand M, Pasquier B, Senft M, Dutot G, Melin C, Lafont H, Lairon D (1994) Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat. JPEN J Parenter Enteral Nutr 18:534–543. https://doi.org/10.1177/0148607194018006534

    Article  CAS  PubMed  Google Scholar 

  4. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT (2017) Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66:1414–1427. https://doi.org/10.1136/gutjnl-2016-313099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Couedelo L, Boue-Vaysse C, Fonseca L, Montesinos E, Djoukitch S, Combe N, Cansell M (2011) Lymphatic absorption of alpha-linolenic acid in rats fed flaxseed oil-based emulsion. Br J Nutr 105:1026–1035. https://doi.org/10.1017/S000711451000454X

    Article  CAS  PubMed  Google Scholar 

  6. Couedelo L, Amara S, Lecomte M, Meugnier E, Monteil J, Fonseca L, Pineau G, Cansell M, Carriere F, Michalski MC et al (2015) Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food Funct 6:1726–1735. https://doi.org/10.1039/c5fo00070j

    Article  CAS  PubMed  Google Scholar 

  7. Daher CF, Baroody GM, Howland RJ (2003) Effect of a surfactant, Tween 80, on the formation and secretion of chylomicrons in the rat. Food Chem Toxicol 41:575–582

    Article  CAS  Google Scholar 

  8. Dansirikul C, Choi M, Duffull SB (2005) Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel. Comput Biol Med 35:389–403. https://doi.org/10.1016/j.compbiomed.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Dekker MJ, Wright AJ, Mazurak VC, Marangoni AG, Rush JW, Graham TE, Robinson LE (2009) Fasting triacylglycerol status, but not polyunsaturated/saturated fatty acid ratio, influences the postprandial response to a series of oral fat tolerance tests. J Nutr Biochem 20:694–704. https://doi.org/10.1016/j.jnutbio.2008.06.012

    Article  CAS  PubMed  Google Scholar 

  10. EFSA (2013) Scientific opinion on the re-evaluation of sodium stearoyl-2-lactylate (E481) and calcium stearoyl-2-lactylate (E482) as food additives: re-evaluation of sodium and calcium stearoyl-2-lactylates (E481-E482) as food additives. EFSA J 11:3144. https://doi.org/10.2903/j.efsa.2013.3144

    Article  CAS  Google Scholar 

  11. Garaiova I, Guschina IA, Plummer SF, Tang J, Wang D, Plummer NT (2007) A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr J 6:4. https://doi.org/10.1186/1475-2891-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garaulet M, Perez-Llamas F, Zamora S, Tebar FJ (2002) Interrelationship between serum lipid profile, serum hormones and other components of the metabolic syndrome. J Physiol Biochem 58:151–160

    Article  CAS  Google Scholar 

  13. Holder MK, Chassaing B (2018) Impact of food additives on the gut-brain axis. Physiol Behav. https://doi.org/10.1016/j.physbeh.2018.02.025

    Article  CAS  Google Scholar 

  14. Jiang Z, Zhao M, Zhang H, Li Y, Liu M and Feng F (2018) Antimicrobial emulsifier-glycerol monolaurate induces metabolic syndrome, gut microbiota dysbiosis, and systemic low-grade inflammation in low-fat diet fed mice. Mol Nutr Food Res 62 https://doi.org/10.1002/mnfr.201700547

    Article  Google Scholar 

  15. Lam RS, Nickerson MT (2013) Food proteins: a review on their emulsifying properties using a structure-function approach. Food Chem 141:975–984. https://doi.org/10.1016/j.foodchem.2013.04.038

    Article  CAS  PubMed  Google Scholar 

  16. Laville M, Vors C, Nazare JA, Michalski MC (2013) Importance of the postprandial phase in human health. Bull Acad Natl Med 197:65–77 discussion 77–68

    CAS  PubMed  Google Scholar 

  17. Lefevre T, Subirade M (2003) Formation of intermolecular beta-sheet structures: a phenomenon relevant to protein film structure at oil-water interfaces of emulsions. J Colloid Interface Sci 263:59–67

    Article  CAS  Google Scholar 

  18. Li X, Wang L, Li Y, Ho Y, Yang D, Chen Y, Hu X, Xue M (2011) Polysorbates as novel lipid-modulating candidates for reducing serum total cholesterol and low-density lipoprotein levels in hyperlipidemic C57BL/6J mice and rats. Eur J Pharmacol 660:468–475. https://doi.org/10.1016/j.ejphar.2011.03.027

    Article  CAS  PubMed  Google Scholar 

  19. Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, Leveille GA, Van Horn L, Williams CL, Booth SL (1998) Dietary fat consumption and health. Nutr Rev 56:S3–S19 discussion S19–28

    Article  Google Scholar 

  20. Liu Y, Lei F, Yuan F, Gao Y (2014) Effects of milk proteins on release properties and particle morphology of beta-carotene emulsions during in vitro digestion. Food Funct 5:2940–2947. https://doi.org/10.1039/c4fo00585f

    Article  CAS  PubMed  Google Scholar 

  21. Martinez B, Miranda J, Vàzquez B, Fente C, Franco C, Rodriguez J, Cepeda A (2012) Development of a hamburger patty with healthier lipid formulation and study of its nutritional, sensory, and stability properties. Food Bioprocess Technol 5:200–208. https://doi.org/10.1007/s11947-009-0268-x

    Article  CAS  Google Scholar 

  22. McClements DJ (2018) Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 9:22–41. https://doi.org/10.1039/c7fo01515a

    Article  CAS  PubMed  Google Scholar 

  23. Oberli M, Douard V, Beaumont M, Jaoui D, Devime F, Laurent S, Chaumontet C, Mat D, Le Feunteun S, Michon C, et al. (2018) Lipo-protein emulsion structure in the diet affects protein digestion kinetics, intestinal mucosa parameters and microbiota composition. Mol Nutr Food Res 62 https://doi.org/10.1002/mnfr.201700570

    Article  Google Scholar 

  24. Peng J, Luo F, Ruan G, Peng R, Li X (2017) Hypertriglyceridemia and atherosclerosis. Lipids Health Dis 16:233. https://doi.org/10.1186/s12944-017-0625-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roberts CL, Rushworth SL, Richman E, Rhodes JM (2013) Hypothesis: increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease. J Crohns Colitis 7:338–341. https://doi.org/10.1016/j.crohns.2013.01.004

    Article  PubMed  Google Scholar 

  26. Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, Nebot C, Cardelle-Cobas A, Franco CM, Cepeda A (2018) Food additives, contaminants and other minor components: effects on human gut microbiota-a review. J Physiol Biochem 74:69–83. https://doi.org/10.1007/s13105-017-0564-2

    Article  CAS  PubMed  Google Scholar 

  27. Salvia-Trujillo L, McClements DJ (2016) Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: influence of lipid droplet size. Food Chem 210:295–304. https://doi.org/10.1016/j.foodchem.2016.04.125

    Article  CAS  PubMed  Google Scholar 

  28. Sauvant P (2015) The more we offer «light-food» to the consumers, the more obesity increases: could emulsifiers be responsible? J Nutr Health Food Eng 3 https://doi.org/10.15406/jnhfe.2015.03.00104

  29. Sauvant P, Cansell M, Hadj Sassi A, Atgié C (2012) Vitamin A enrichment: caution with encapsulation strategies used for food applications. Food Res Int 46:469–479. https://doi.org/10.1016/j.foodres.2011.09.025

    Article  CAS  Google Scholar 

  30. Singh H, Sarkar A (2011) Behaviour of protein-stabilised emulsions under various physiological conditions. Adv Colloid Interf Sci 165:47–57. https://doi.org/10.1016/j.cis.2011.02.001

    Article  CAS  Google Scholar 

  31. Speranza A, Corradini MG, Hartman TG, Ribnicky D, Oren A, Rogers MA (2013) Influence of emulsifier structure on lipid bioaccessibility in oil-water nanoemulsions. J Agric Food Chem 61:6505–6515. https://doi.org/10.1021/jf401548r

    Article  CAS  PubMed  Google Scholar 

  32. Sugasini D, Devaraj VC, Ramesh M, Lokesh BR (2014) Lymphatic transport of alpha-linolenic acid and its conversion to long chain n-3 fatty acids in rats fed microemulsions of linseed oil. Lipids 49:225–233. https://doi.org/10.1007/s11745-013-3873-4

    Article  CAS  PubMed  Google Scholar 

  33. Tan KW, Sun LJ, Goh KK, Henry CJ (2016) Lipid droplet size and emulsification on postprandial glycemia, insulinemia and lipidemia. Food Funct 7:4278–4284. https://doi.org/10.1039/c6fo00897f

    Article  CAS  PubMed  Google Scholar 

  34. Vin K, Connolly A, McCaffrey T, McKevitt A, O'Mahony C, Prieto M, Tennant D, Hearty A, Volatier JL (2013) Estimation of the dietary intake of 13 priority additives in France, Italy, the UK and Ireland as part of the FACET project. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:2050–2080. https://doi.org/10.1080/19440049.2013.851417

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Huo M, Zhou J, Xie S (2010) PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Prog Biomed 99:306–314. https://doi.org/10.1016/j.cmpb.2010.01.007

    Article  Google Scholar 

  36. Zou L, Liu W, Liu C, Xiao H, McClements DJ (2015) Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate. Food Funct 6:2475–2486. https://doi.org/10.1039/c5fo00606f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Régine Sarr and Julien Monteil for their technical assistance.

Funding

This work was supported by the Conseil Régional d’Aquitaine and Bordeaux Sciences Agro and received a grant from Carnot Institute (LISA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Atgié.

Ethics declarations

This study was compliant with ethical standards (IEC-AR/MESR approval no. 00289.01).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassra, M., Bourgeois, C., Subirade, M. et al. Oral administration of lipid oil-in-water emulsions performed with synthetic or protein-type emulsifiers differentially affects post-prandial triacylglycerolemia in rats. J Physiol Biochem 74, 603–612 (2018). https://doi.org/10.1007/s13105-018-0634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0634-0

Keywords

Navigation