Skip to main content
Log in

The relationship between fatty acid peroxidation and α-tocopherol consumption in isolated normal and transformed hepatocytes

  • Article
  • Published:
Lipids

Abstract

The response of normal and transformed rat hepatocytes to oxidative stress was investigated. Isolated normal rat hepatocytes and differentiated hepatoma cells (the Fao cell line was derived from the Reuber H 35 rat hepatoma) in suspension were incubated with the ADP/Fe3+ chelate for 30 min at 37°C. Membrane lipid oxidation was assessed by measuring (i) free malondialdehyde (MDA) production by a high-performance liquid chromatography (HPLC) procedure, (ii) membrane fatty acid disappearance as judged by capillary gas chromatography, and (iii) α-tocopherol oxidation as determined by HPLC and electrochemical detection. The addition of iron led to increased MDA production in normal as well as in transformed cells, and to simultaneous consumption of polyunsaturated fatty acids (PUFA) and α-tocopherol. In addition, in Fao cells more α-tocopherol was consumed during lipid peroxidation while less PUFA was oxidized. Lipid peroxidation was lower in tumoral hepatocytes than in normal cells. This could be due to a difference in membrane lipid composition because of a lower PUFA content and a higher α-tocopherol level in Fao cells. During oxidation, Fao cells produced 1.5 to 2 times less MDA than normal cells, while in the tumoral cells the amount of oxidized PUFA having 3 or more double bonds was 7 to 8 times lower. Therefore, measuring MDA alone as an index of lipid peroxidation did not allow for proper comparison of the membrane lipid oxidizability of transformed cellsvs. the membrane lipid oxidizability of normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP:

adenosine diphosphate

BHT:

butylated hydroxytoluene

FA:

fatty acid

FAME:

fatty acid methyl ester

GC:

gas chromatography

HPLC:

high-performance liquid chromatography

MDA:

malondialdehyde

PUFA:

polyunsaturated fatty acid

SDS:

sodium dodecyl sulfate

References

  1. Gordeuk, V.R., Bacon, B.R., and Brittenham, G.M. (1987)Annu. Rev. Nutr. 7, 485–508.

    Article  PubMed  CAS  Google Scholar 

  2. MacLaren, G.D., Muir, W.A., and Kellermeyer, R.W. (1983)CRC Crit. Rev. Clin. Lab. Sci. 19, 205–266.

    Article  Google Scholar 

  3. Basset, M.L., Halliday, J.W., and Powell, L.W. (1984)Semin. Liver Dis. 4, 217–227.

    Article  Google Scholar 

  4. Adams, P.C., Spechley, M., and Kertesz, A.E. (1991)Gastroenterology 101, 368–372.

    PubMed  CAS  Google Scholar 

  5. Bacon, B.R., and Britton, R.S. (1990)Hepatology 1, 127–137.

    Google Scholar 

  6. Minotti, G., and Aust, S.D. (1987)Chem. Phys. Lipids 44, 191–208.

    Article  PubMed  CAS  Google Scholar 

  7. Bacon, B.R., Tavill, A.S., Brittenham,G.M., Parck, C.H., and Recknagel, R.O. (1985) inFree Radicals in Liver Injury (Poli, G., Cheeseman, K.H., Dianzani, M.U., and Slater, T.F., eds.) pp. 49–57, IRL Press, Oxford.

    Google Scholar 

  8. Braughler, J.M., Duncan, L.A., and Chase, R.L. (1986)J. Biol. Chem. 261, 10282–10289.

    PubMed  CAS  Google Scholar 

  9. Lescoat, G., Loreal, O., Moirand, R., Dezier, J.F., Pasdeloup, N., Deugnier, Y., and Brissot, P. (1989)Liver 9, 179–185.

    PubMed  CAS  Google Scholar 

  10. Kagan, V.E., Bakalova, R.A., and Karakashev, P.H. (1991) inMembrane Lipid Oxidation (Vigo-Pelfrey, C., ed.) Vol. 3, pp. 191–208, CRC Press, Boca Raton.

    Google Scholar 

  11. Dianzani, M.U. (1989)Tumori 75, 351–357.

    PubMed  CAS  Google Scholar 

  12. Galeotti, T., Borrelo, S., Minotti, G., Palombini, G., Masotti, L., Sartor, G., Cavatorta, P., Arcioni, A., and Zannoni, C. (1984)Toxicol. Pathol. 12, 324–330.

    PubMed  CAS  Google Scholar 

  13. Frankel, E.N. (1987)Chem. Phys. Lipids 44, 73–85.

    Article  PubMed  CAS  Google Scholar 

  14. May, H.E., and MacCay, P.B. (1968)J. Biol. Chem. 243:2296–2305.

    PubMed  CAS  Google Scholar 

  15. Deschatrette, J., and Weiss, M.C. (1974)Biochimie 56, 1603–1611.

    PubMed  CAS  Google Scholar 

  16. Gugen, G., Guillouzo, A., Boisnard, M., Le Cam, A., and Bourel, M. (1975)Biol. Gastroenterol. 8, 223–231.

    Google Scholar 

  17. Morel, I., Lescoat, G., Cillard, J., Pasdeloup, N., Brissot, P., and Cillard, P. (1990)Biochem. Pharmacol. 39, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  18. Bradford, M.M. (1976)Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  19. Burton, G.W., Webb, A., and Ingold, K.U. (1985)Lipids 20, 29–39.

    Article  PubMed  CAS  Google Scholar 

  20. Christie, W.W. (1973) inLipid Analysis, pp. 89–90, Pergamon Press, Oxford.

    Google Scholar 

  21. Wood, R., Upretti, G.C., and De Antueno, R.J. (1986)Lipids 21, 292–300.

    Article  PubMed  CAS  Google Scholar 

  22. Upretti, G.C., De Antueno, R.J., and Wood, R. (1983)J. Natl. Cancer Inst. 70, 567–573.

    Google Scholar 

  23. Jordan, R.A., and Schenkman, J.B. (1982)Biochem. Pharmacol. 31, 1393–1400.

    Article  PubMed  CAS  Google Scholar 

  24. Hu, H.-L., Frankel, E.N., and Tappel, A.L. (1990)Lipids 25, 194–198.

    PubMed  CAS  Google Scholar 

  25. Cheeseman, K.H., Burton, G.W., Ingold, K.U. and Slater, T.F. (1984)Toxicol. Pathol. 12, 235–239.

    Article  PubMed  CAS  Google Scholar 

  26. Canuto, R.A., Biocca, M.E., Muzio, G., and Dianzani, M.U. (1989)Cell. Biochem. Funct. 7, 11–19.

    Article  PubMed  CAS  Google Scholar 

  27. Mourehouse, L.A., and Aust, S.D. (1988)Free Radical Biol. Med. 4, 269–277.

    Article  Google Scholar 

  28. Nakamoto, S., Yamanoi, Y., Kawabata, T., Sadahira, Y., Mori, M., and Awai, M. (1986)Biochim. Biophys. Acta 889, 15–22.

    Article  PubMed  CAS  Google Scholar 

  29. Hogberg, J., Orrenius, S., and O'Brien, P.J. (1975)Eur. J. Biochem. 59, 449–455.

    Article  PubMed  CAS  Google Scholar 

  30. Hogberg, J., Orrenius, S., and Larson, R.E. (1975)Eur. J. Biochem. 50, 595–602.

    Article  PubMed  CAS  Google Scholar 

  31. Csallany, A.S., Guan, M.D., Manwaring, J.D., and Addis, P.B. (1984)Anal. Biochem. 142, 277–283.

    Article  PubMed  CAS  Google Scholar 

  32. Bird, R.P., and Draper, H.H. (1984)Methods Enzymol. 105, 299–305.

    Article  PubMed  CAS  Google Scholar 

  33. Gutteridge, J.M.C. (1979)FEBS Lett. 105, 278.

    Article  PubMed  CAS  Google Scholar 

  34. Nair, V., Vietti, D.E., and Cooper, C.S. (1981)J. Am. Chem. Soc. 103, 3030–3034.

    Article  CAS  Google Scholar 

  35. Schaur, R.J., Zollner, H., and Esterbauter, H. (1991) inMembrane Lipid Oxidation (Vigo-Pelfrey, C., ed.) Vol. 3, pp. 141–163, CRC Press, Boca Raton.

    Google Scholar 

  36. Masotti, L., Casali, E., and Galeotti, T. (1988)Free Radical Biol. Med. 4, 377–386.

    Article  CAS  Google Scholar 

  37. Cheeseman, K.H., Collins, M., Proudfoot, K., Slater, T.F., Burton, G.W., Webb, A.C., and Ingold, K.U. (1986)Biochem. J. 235, 507–514.

    PubMed  CAS  Google Scholar 

  38. Galeotti, T., Borello, S., Palombini, G., Masotti, L., Ferrari, M.B., Cavatorta, P., Arcioni, A., Stremmenos, C., and Zannini, C. (1984)FEBS Lett. 169, 169–173.

    Article  PubMed  CAS  Google Scholar 

  39. Burns, C.P., and Spector, A.A. (1987)Lipids 22, 178–184.

    Article  PubMed  CAS  Google Scholar 

  40. Reitz, R.C., Thompson, J.A., and Morris, H.P. (1977)Cancer Res. 37, 561–567.

    PubMed  CAS  Google Scholar 

  41. Upretti, G.C., De Antueno, R.J., and Wood, R. (1983)J. Natl. Cancer Inst. 70, 559–566.

    Google Scholar 

  42. Sandy, M.S., Monte, D.D., and Smith, M.T. (1988)Toxicol. Appl. Pharmacol. 93, 288–297.

    Article  PubMed  CAS  Google Scholar 

  43. Slater, T.F., Cheeseman, K.H., and Proudfoot, K. (1984) inFree Radicals in Molecular Biology, Aging and Disease (Armstrong, D., ed.) pp. 293–305, Raven Press, New York.

    Google Scholar 

  44. Balasubramanian, K.A., Manohar, M., and Mathan, V.I. (1988)Biochim. Biophys. Acta 962, 51–58.

    PubMed  CAS  Google Scholar 

  45. Diplock, A.T., Balasubramanian, K.A., Manohar, M., Mathan, V.I., and Ashton, D. (1988)Biochim. Biophys. Acta 962, 42–50.

    PubMed  CAS  Google Scholar 

  46. Pepin, D., Chambaz, J., Rissell, M.Y., Guillouzo, A., and Bereziat, G. (1988)Lipids 23, 784–790.

    Article  PubMed  CAS  Google Scholar 

  47. Das, U.N., Huang, Y.S., Begin, M.E., Ells, G., and Horrobin, D.F. (1987)Free Radical Biol. Med. 3, 9–14.

    Article  CAS  Google Scholar 

  48. Halliwell, B., and Gutteridge, J.M.C. (1989) inFree Radicals in Biology and Medicine (Halliwell, B., and Gutteridge, J.M.C., eds.) pp. 416–508, Clarendon Press, Oxford.

    Google Scholar 

  49. McCarthy, P.T., Rice-Evans, C., Hallinan, T., Gor, J., Green, N., and Diplock, A.T. (1989) inFree Radicals Diseased States and Anti-Radical Intervents (Rice-Evans, C., ed.) pp. 201–220, Richelieu Press, London.

    Google Scholar 

  50. Serbinova, E., Kagan, V., Han, D., Packer, L. (1991)Free Radical Biol. Med. 5, 263–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Cogrel, P., Morel, I., Lescoat, G. et al. The relationship between fatty acid peroxidation and α-tocopherol consumption in isolated normal and transformed hepatocytes. Lipids 28, 115–119 (1993). https://doi.org/10.1007/BF02535774

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535774

Keywords

Navigation