Skip to main content
Log in

Studies of differential turnover of palmitoyl and stearoyl species of glycerophosphatides using labeled unsaturated acids

  • Published:
Lipids

Abstract

Normal and bile fistula rats were injected with 1-14C-linoleate and arachidonate as albumin complex and the glycerides and glycerophosphatides of the liver and bile were isolated at various time intervals. The distribution of radioactivity among the individual molecular species was determined by thin layer and radio gas chromatography and specific enzymic hydrolyses. At 30 min after administration of linoleate 30% of the radioactivity in liver was in lecithins and 8% in cephalins, while at 120 min 48% was in lecithins and 16% in cephalins. After arachidonate, 58% and 64% of the counts were in lecithins and 12% to 13% in the cephalins at the above periods of sampling. The specific activity of the palmitoyl linoleoyl lecithins and cephalins was two to three times higher than that of the corresponding stearoyl linoleoyl species, which was of the same order but much lower magnitude than found previously for lecithins using labeled phosphate and choline. The palmitoyl and stearoyl species of arachidonoyl lecithins possessed equal specific activities, in sharp contrast to previous findings with radioactive phosphate, which showed a 12 times higher specific activity for the palmitoyl arachidonate. The palmitoyl arachidonoyl cephalins had two to three times greater specific activity than the corresponding stearoyl species in agreement with previous work using labeled phosphate. The distribution of radioactivity suggests that the arachidonate was incorporated into the lecithins largely via acyl transfer, while the linoleate contributed to both acyl transfer and de novo synthesis. Interpretation of the mechanism of uptake of these acids into the cephalins awaits further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins, F.D., Biochem. J. 88: 319–324 (1963).

    PubMed  CAS  Google Scholar 

  2. Arvidson, G.A.E., Europ. J. Biochem. 5: 415–421 (1968).

    Article  PubMed  CAS  Google Scholar 

  3. Trewhella, M.A., and F.D. Collins, Lipids 4: 304–307 (1969).

    PubMed  CAS  Google Scholar 

  4. Arvidson, G.A.E., Europ. J. Biochem., 4: 478–486 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. Balint, J.A., D.A. Beeler, D.H. Treble and H.L. Spitzer, J. Lipid Res. 8: 486–493 (1967).

    PubMed  CAS  Google Scholar 

  6. Siperstein, M.D., and I.L. Chaikoff, J. Biol. Chem. 198: 93–104 (1952).

    PubMed  CAS  Google Scholar 

  7. Folch, J., M. Lees and G.H. Sloane-Stanley, Ibid. 226: 497–509 (1957).

    PubMed  CAS  Google Scholar 

  8. Rouser, G., G. Kritchevsky and A. Yamamoto, in “Lipid Chromatographic Analysis”, Vol. 1, Edited by G.V. Marinetti, Marcel Dekker, Inc., New York, 1967, p. 99–162.

    Google Scholar 

  9. Skipski, V.P., R.F. Peterson and M. Barclay, Biochem. J. 90: 374–378 (1964).

    PubMed  CAS  Google Scholar 

  10. Kuksis, A., W.C. Breckenridge, L. Marai and O. Stachnyk, JAOCS 45: 537–546 (1968).

    PubMed  CAS  Google Scholar 

  11. Holub, B.J., and A. Kuksis, Lipids 4: 466–472 (1969).

    PubMed  CAS  Google Scholar 

  12. Breckenridge, W.C., and A. Kuksis, Ibid. 5: 342–352 (1970).

    PubMed  CAS  Google Scholar 

  13. Stein, Y., and B. Shapiro, Amer. J. Physiol. 196: 1238–1241 (1959).

    PubMed  CAS  Google Scholar 

  14. Sgoutas, D.S., and F.A. Kummerow, Proc. Soc. Exp. Biol. Med. 123: 279–282 (1966).

    PubMed  CAS  Google Scholar 

  15. Coniglio, J.G., J.T. Davis and S. Aylward, J. Nutr. 84: 265–271 (1964).

    CAS  Google Scholar 

  16. Wood, R., and R.D. Harlow, Arch. Biochem. Biophys. 131: 495–501 (1969).

    Article  PubMed  CAS  Google Scholar 

  17. Balint, J.A., E.C. Kyriakides, H.L. Spitzer and E.S. Morrison, J. Lipid Res. 6: 96–99 (1965).

    PubMed  CAS  Google Scholar 

  18. Hill, E.E., D.R. Husbands and W.E.M. Lands, J. Biol. Chem. 243: 4440–4451 (1968).

    PubMed  CAS  Google Scholar 

  19. Kuksis, A., L. Marai, W.C. Breckenridge, D.A. Gornall and O. Stachnyk, Can. J. Physiol. Pharmacol. 46: 511–524 (1968).

    PubMed  CAS  Google Scholar 

  20. Possmayer, F., G.L. Scherphof, T.M.A.R. Dubbelman, L.M.G. Van Golde and L.L.M. Van Deenan, Biochim. Biophys. Acta. 176: 95–110 (1969).

    PubMed  CAS  Google Scholar 

  21. Kennedy, E.P., and S.B. Weiss, J. Biol. Chem. 222: 193–214 (1956).

    PubMed  CAS  Google Scholar 

  22. Bremer, J., P.H. Figard and D.M. Greenberg, Biochim. Biophys. Acta. 43: 477–488 (1960).

    Article  CAS  Google Scholar 

  23. Lands, W.E.M., J. Biol. Chem. 235: 2233–2237 (1960).

    PubMed  CAS  Google Scholar 

  24. Van Golde, L.M.G., G.L. Scherphof and L.L.M. Van Deenan, Biochim. Biophys. Acta 176: 635–637 (1969).

    PubMed  Google Scholar 

  25. Van Den Bosch, H., and L.L.M. Van Deenen, Ibid. 106: 326–337 (1965).

    PubMed  Google Scholar 

  26. Brandt, A.E., and W.E.M. Lands, Ibid. 144: 605–612 (1967).

    PubMed  CAS  Google Scholar 

  27. Isozaki, M., A. Yamamoto, T. Amako, Y. Sadai and H. Okita, Med. J. Osaka Univ. 12: 285–295 (1962).

    CAS  Google Scholar 

  28. Akesson, B., Europ. J. Biochim. 9: 463–477 (1969).

    Article  CAS  Google Scholar 

  29. Tinoco, J., G. Sheehan, S. Hopkins and R.L. Lyman, Lipids 5: 412–416 (1970).

    PubMed  CAS  Google Scholar 

  30. Holub, B.J., and A. Kuksis, “Relative Contributions of de Novo Synthesis and Acyl Transfer to the Biogenesis of Lecithins and Cephalins by Rat Liver”, ISF-AOCS Meeting, Chicago, Abstract 310 (1970).

  31. Holub, B.J., W.C. Breckenridge and A. Kuksis, Fed. Proc. 29: 630 (1970).

    Google Scholar 

  32. Hill, E.E., and W.E.M. Lands, Biochim. Biophys. Acta. 152: 645–648 (1968).

    PubMed  CAS  Google Scholar 

  33. Tinoco, J., R. Babcock, D.J. McIntosh and R.L. Lyman, Ibid. 164: 129–131 (1968).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Holub, B.J., Breckenridge, W.C. & Kuksis, A. Studies of differential turnover of palmitoyl and stearoyl species of glycerophosphatides using labeled unsaturated acids. Lipids 6, 307–313 (1971). https://doi.org/10.1007/BF02531820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02531820

Keywords

Navigation