Skip to main content
Log in

Phospholipids and cholesterol of liver nuclei during artificial hypobiosis of rats

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The contents of lipids in the tissue and the nuclei of liver cells during artificial hypobiosis, as well as in the nuclei of liver cells for 3 days after the cessation of cooling in rats, were studied. In the artificial hypobiosis and in the state of normothermia 24 h after the cessation of cooling, the total phospholipid content of the liver cell nuclei increased by 20% due to minor phospholipids. The levels of sphingomyelin, phosphatidylinositol, phosphatidylserine, cardiolipin, and lysophosphatidylcholine were doubled in hypobiosis and then nonmonotonically returned to the normal level within 72 h. In the state of artificial hypobiosis, the levels of fatty acids, cholesterol, and diglycerides increased by 30–40%. The state of artificial hypobiosis did not affect the level of lipids in the liver tissue of Wistar rats. The increase of the lipid content in the liver cell nuclei of Wistar rats indicates the important role of lipids in functions of the nucleus when the energy supply and protein synthesis are inhibited under conditions of artificial hypobiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PL:

phospholipids

PEA:

phosphatidylethanolamine

LPC:

lysophosphatidylcholine

CHL:

cholesterol

References

  1. N. N. Timofeev, Hypobiosis and Cryobiosis: Past, Present, and Future (Znanie, Moscow, 2005) [in Russian].

    Google Scholar 

  2. E. V. Maistrakh, Hypotermia and Anabiosis (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  3. F. Z. Meerson and M. G. Pshennikova, Adaptation to Stressful Situations and Physical Load (Meditsina, Moscow, 1988) [in Russian].

    Google Scholar 

  4. D. A. Ignatiev, L. A. Fialkovskaya, N. I. Pepepelkina, et al., Radiat. Biol. Radioekol. 46, 705 (2006).

    Google Scholar 

  5. I. K. Kolomiytseva, L. N. Markevich, N. I. Perepelkina, et al., in Hypothermia: Prevention, Recognition and Treatment, Ed. by J. I. V. Delgado and V. G. F. Garza (Nova Science Publ., New York, 2012), pp. 1–42.

  6. J. Dark, Annu. Rev. Nutr. 25, 469 (2005).

    Article  Google Scholar 

  7. L. P. Smirnov and V. V. Bogdan, Lipids in Physicochemical Adaptations of Ectotherms to Abiotic and Biotic Environmental Factors (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  8. D. J. Pehowich, P. M. Macdonald, R. N. McElhaney, et al., Biochemistry 27, 4632 (1988).

    Article  Google Scholar 

  9. T. Ruf and W. Arnold, Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, 1044 (2008).

    Article  Google Scholar 

  10. M. E. Berridge, Physiol. Rev. 96, 1261 (2016).

    Article  Google Scholar 

  11. I. K. Kolomiytseva, N. I. Perepelkina, I. V. Patrushev, and V. I. Popov, Biochemistry (Moscow) 68 (7), 783 (2003).

    Article  Google Scholar 

  12. I. K. Kolomiytseva, N. I. Perepelkina, A. D. Zharikova, and V. I. Popov, Comp. Biochem. Physiol. B 151, 386 (2008).

    Article  Google Scholar 

  13. A. A. Lakhina, L. N. Markevich, N. M. Zakharova, et al., Dokl. Biochem. Biophys. 469 (1), 235 (2016).

    Article  Google Scholar 

  14. O. V. Bykova, L. N. Markevich, and I. K. Kolomiytseva, Vestn. Nizhn. Novgorod. Gos. Univ., Ser. Biol. 1 (1), 100 (2012).

    Google Scholar 

  15. I. K. Kolomiytseva, L. N. Markevich, D. A. Ignat’ev, and O. V. Bykova, Biochemistry (Moscow) 75 (9), 1132 (2010).

    Article  Google Scholar 

  16. B. C. Dobroborskii, Thermodynamics of Biological Systems (St. Petersburg, 2006) [in Russian].

    Google Scholar 

  17. P. K. Anokhin, Cybernetics of Functional Systems (Meditsina, Moscow, 1998) [in Russian].

    MATH  Google Scholar 

  18. I. K. Kolomiytseva, L. V. Slozhenikina, L. A. Fialkovskaya, et al., J. Biol. Phys. 25, 325 (1999).

    Article  Google Scholar 

  19. I. K. Kolomiytseva, Biophysics (Moscow) 54 (5), 655 (2009).

    Article  Google Scholar 

  20. S. R. Umanskii and Yu. I. Kovalev, Bioorg. Khim. 1, 463 (1975).

    Google Scholar 

  21. J. Folch, M. Lees, and G. H. Sloane-Stanley, J. Biol. Chem. 226, 497 (1957).

    Google Scholar 

  22. F. Vitiello and J. B. Zanetta, J. Chromatography 166, 637 (1978).

    Article  Google Scholar 

  23. I. Gerlach and B. Deuticke, Biochem. Zeitschrift 337, 477 (1963).

    Google Scholar 

  24. M. I. Prokhorova and Z. N. Tupikova, Advanced Practical Course in Carbohydrate and Lipid Metabolism (Leningrad State Univ., Leningrad, 1965) [in Russian].

    Google Scholar 

  25. J. B. Marsh and D. B. Weinstein, J. Lipid Res. 7, 574 (1966).

    Google Scholar 

  26. W. H. Sperry and M. Webb, J. Biol. Chem. 187, 97 (1950).

    Google Scholar 

  27. I. K. Kolomiytseva, T. P. Kulagina, L. N. Markevich, et al., Bioelectrochemistry 58 (1), 31 (2002).

    Article  Google Scholar 

  28. C. L. Iesema and D. J. Morre, J. Biol. Chem. 253 (21), 7960 (1978).

    Google Scholar 

  29. S. Melnychuk, V. Morozova, and L. Stepanova, Int. Sci. Electr. J. Earth BioResources and Quality of Life 4 (2013).

  30. A. V. Alessenko and E. B. Burlakova, Bioelectrochemistry 58, 13 (2002).

    Article  Google Scholar 

  31. E. Albi and M. P. Viola Magni, Biol. Cell 96, 657 (2004).

    Article  Google Scholar 

  32. E. Albi, A. Lazzarini, R. Lazzarini, et al., Int. J. Mol. Sci. 14, 6529 (2013).

    Article  Google Scholar 

  33. S. Carraso and I. Merida, Biochem. Sci. 32 (1), 27 (2007).

    Article  Google Scholar 

  34. I. K. Kolomiytseva, A. A. Lakhina, L. N. Markevich, and E. E. Fesenko, Dokl. Biochem. Biophys. 470, 364 (2016).

    Article  Google Scholar 

  35. L. E. Epperson, T. A. Dahl, and S. L. Martin, Mol. Cell. Proteomics 3, 920 (2004).

    Article  Google Scholar 

  36. H. Mamady and K. B. Storey, Mol. Cell. Biochem. 292 (1–2), 89 (2006).

    Article  Google Scholar 

  37. T. Oda, K. Shimizu, A. Yamaguchi, et al., Cryobiology 65 (2), 104 (2012).

    Article  Google Scholar 

  38. A. V. Alessenko, Membr. Cell. Biol. 13 (2), 303 (2000).

    Google Scholar 

  39. M. Laplaud, M. Saboureau, L. Beaubatie, and E. I. Bachir-Omari, Biochim. Biophys. Acta 1005, 143 (1989)

    Article  Google Scholar 

  40. G. M. Wenberg and J. C. Holland, Comp. Biochem. Physiol. A. Comp. Physiol. 44 (3), 775 (1973).

    Article  Google Scholar 

  41. R. Bucki, M. Gurska, M. Zendzian-Piotrowska, and J. Gurski, J. Physiol. Pharmacol. 51 (3), 535 (2000).

    Google Scholar 

  42. E. S. Gevopkyan, Zh. V. Yavroyan, and G. A. Panosyan, Byull. Eksp. Biol. Med. 194 (8), 171 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kolomiytseva.

Additional information

Original Russian Text © I.K. Kolomiytseva, A.A. Lakhina, L.N. Markevich, D.A. Ignat’ev, 2017, published in Biofizika, 2017, Vol. 62, No. 3, pp. 525–532.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomiytseva, I.K., Lakhina, A.A., Markevich, L.N. et al. Phospholipids and cholesterol of liver nuclei during artificial hypobiosis of rats. BIOPHYSICS 62, 421–427 (2017). https://doi.org/10.1134/S0006350917030083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917030083

Keywords

Navigation