Skip to main content
Log in

Physiology in fractal dimensions: Error tolerance

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The natural variability in physiological form and function is herein related to the geometric concept of a fractal. The average dimensions of the branches in the tracheobronchial tree, long thought to be exponential, are shown to be an inverse power law of the generation number modulated by a harmonic variation. A similar functional form is found for the power spectrum of the QRS-complex of the healthy human heart. These results follow from the assumption that the bronchial tree and the cardiac conduction system are fractal forms. The fractal concept provides a mechanism for the morphogenesis of complex structures which are more stable than those generated by classical scaling (i.e., they are more error tolerant).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, M.V.; Lewis, A.V. On the Weierstrass-Mandelbrot fractal function. Proc. Roy. Soc. Lond. 370A:459–484; 1980.

    Google Scholar 

  2. Goldberger, A.L.; West, B.J. Fractals in physiology and medicine. Yale J. Biol. Med. 60:421–435; 1987.

    CAS  PubMed  Google Scholar 

  3. Goldberger, A.L.; Bhargava, V.; West, B.J.; Mandell, A.J. On a mechanism of cardiac electrical stability; the fractal hypothesis. Biophys. J. 48:525–528; 1985.

    CAS  PubMed  Google Scholar 

  4. Hughes, E.D., Montroll, E.W.; Shlesinger, M.F. J. Stat. Phys. 28:111; 1982.

    Article  Google Scholar 

  5. Koslow, S.H.; Mandell, A.J.; Shlesinger, M.F., eds. Perspectives in biological dynamics and theoretical medicine. New York: New York Acad. Sci.; 1987.

    Google Scholar 

  6. Mandelbrot, B.B. Fractals, form and chance. W.H. Freeman; 1977; The fractal geometry of nature. W.H. Freeman; 1982.

  7. Montroll, E.W. and Shlesinger, M.F., Proc. Natl. Acad. Sci. 79:337; 1982.

    Google Scholar 

  8. Raabe, O.G.; Yeh, M.C.; Schum, G.M.; Phalen, R.F. Tracheobronchial geometry; human, dog, rat, hamster. Albuquerque, NM: Lovelace Foundation for Medical Education and Research; 1976.

    Google Scholar 

  9. Thompson, D.W. On growth and forum, 2nd Ed., Cambridge, England: Cambridge University Press; 1963; original 1917.

    Google Scholar 

  10. Weibel, E.R.; Gomez, D.M. The architecture of the human lung, Sci. 137:577; 1962.

    CAS  Google Scholar 

  11. West, B.J. In: Kelso, J.A.S.; Mandell, A.J.; Shlesinger, M.F., eds. Dynamic patterns in complex systems. Singapore: World Science; 1988.

    Google Scholar 

  12. West, B.J.; Bhargava V., Goldberger, A.L. Beyond the principle of similitude: Renormalizaton in the bronchial tree. J. Appl. Physiol. 60:188–197; 1986.

    Google Scholar 

  13. West, B.J.; Goldberger, A.L. Physiology in fractal dimensions. Am. Sci. 75:354–365; 1987.

    Google Scholar 

  14. West, B.J.; Goldberger, A.L.; Rovner, G.; Bhargava, V. Nonlinear dynamics of the heartbeat I. The AV junction: Passive conduit or active oscillator? Physica 17D:198–206; 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, B.J. Physiology in fractal dimensions: Error tolerance. Ann Biomed Eng 18, 135–149 (1990). https://doi.org/10.1007/BF02368426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368426

Keywords

Navigation