Skip to main content
Log in

Apoplast as the site of response to environmental signals

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

When the life cycle of plants is influenced by various environmental signals, the mechanical properties of the cell wall are greatly changed. These signals also modify the levels and structure of the cell wall constituents and such modifications are supposed to be the cause of the changes in the wall mechanical properties. These changes in the cell wall, the major component of the apoplast, can be recognized as the response of plants to environmental signals. The analysis of the mechanism leading to the response suggests that the apoplast is involved not only in the response but also in the perception and transduction of environmental signals in concert with the receptors of signals located on the plasma membrane. Thus, the apoplast plays a principal role in the communication of plants with the outer world and enables the plants to adapt themselves and survive in the environment full of stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azuma, T., Sumida, Y., Kaneda, Y., Uchida, N. andYasuda, T. 1996. Changes in cell wall polysaccharides in the internodes of submerged floating rice. Plant Growth Regul.19: 183–187.

    Article  CAS  Google Scholar 

  • Bagshaw, S.L. andCleland, R.E. 1990. Wall extensibility and gravitropic curvature of sunflower hypocotyls: correlation between timing of curvature and changes in extensibility. Plant Cell Environ.13: 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Biddington, N.L. 1986. The effects of mechanically-induced stress in plants-a review. Plant Growth Regul.4: 103–123.

    Article  CAS  Google Scholar 

  • Bogre, L., Ligterink, W., Heberlebors, E. andHirt, H. 1996. Mechanosensors in plants. Nature383: 489–490.

    Article  PubMed  CAS  Google Scholar 

  • Bozarth, C.S., Mullet, J.E. andBoyer, J.S. 1987. Cell wall proteins at low water potentials. Plant Physiol.85: 261–267.

    PubMed  CAS  Google Scholar 

  • Braam, J. 1992. Regulated expression of the calmodulin-relatedTCH genes in culturedArabidopsis cells: induction by calcium and heat shock. Proc. Natl. Acad. Sci. USA89: 3213–3216.

    Article  PubMed  CAS  Google Scholar 

  • Braam, J. andDavis, R.W. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes inArabidopsis. Cell60: 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Braam, J., Sistrunk, M.L., Polisensky, D.H., Xu, W., Purugganan, M.M., Antosiewicz, D.M., Campbell, P. andJohnson, K.A. 1996. Life in a changing world:TCH gene regulation of expression and responses to environmental signals. Physiol. Plant.98: 909–916.

    Article  PubMed  CAS  Google Scholar 

  • Braam, J., Sistrunk, M.L., Polisensky, D.H., Xu, W., Purugganan, M.M., Antosiewicz, D.M., Campbell, P. andJohnson, K.A. 1997. Plant responses to environmental stress: regulation and functions of theArabidopsis TCH genes. Planta203: S35-S41.

    Article  PubMed  CAS  Google Scholar 

  • Burke, J.J. andOrzech, K.A. 1988. The heat-shock response in higher plants: a biochemical model. Plant Cell Environ.11: 441–444.

    Article  CAS  Google Scholar 

  • Chazen, O. andNeumann, P.M. 1994. Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary responses to polyethylene glycol-induced water deficits. Plant Physiol.104: 1385–1392.

    PubMed  CAS  Google Scholar 

  • Chen, L., Kamisaka, S. andHoson, T. 1996. (1→3) (1→4)-β-D-glucan-degrading enzymes in the cell wall of air-and water-grown rice coleoptiles. Plant Cell Physiol.37: S467.

    Google Scholar 

  • Chen, L., Kamisaka, S. and Hoson, T. 1998. Suppression of (1→3) (1→4)-β-D-glucan hydrolysis is involved in inhibition of rice coleoptile growth by light. Plant Cell Physiol. (abstract in press).

  • Cho, H. -T. andKende, H. 1997. Expansins and internodal growth of deepwater rice. Plant Physiol.113: 1145–1151.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D.J. 1990. Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth. Plant Cell Environ.13: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D.J. andHedrich, R. 1991. Stretch activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells ofVicia faba L. Planta186: 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Covarrublas, A.A., Ayala, J.W., Reyes, J.L., Hernandez, M. andGarciarrubio, A. 1995. Cell-wall proteins induced by water deficit in bean (Phaseolus, vulgaris L.) seedlings. Plant Physiol.107: 1119–1128.

    Google Scholar 

  • Cowan, A.K., Richardson, G.R. andMaurel, J.C.G. 1997. Stress-induced abscisic acid transients and stimulus-response-coupling. Physiol. Plant.100: 491–499.

    Article  CAS  Google Scholar 

  • Cowles, J.R., Scheld, H.W., LeMay, R. andPeterson, C. 1984. Experiments on plants grown in space: growth and lignification in seedlings exposed to eight days of microgravity. Ann. Bot.54(S3): 33–48.

    PubMed  CAS  Google Scholar 

  • Cramer, G.R. 1992. Kinetics of maize leaf elongation. III. Silver thiosulfate increases the yield threshold of saltstressed plants, but ethylene is not involved. Plant Physiol.100: 1044–1047.

    PubMed  CAS  Google Scholar 

  • Delmer, D.P. andAmor, Y. 1995. Cellulose biosynthesis. Plant Cell7: 987–1000.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J.P. andPickard, B.G. 1993. Mechanosensory calcium-selective cation channels in epidermal cells. Plant J.3: 83–110.

    Article  CAS  Google Scholar 

  • Duncan, R.L. 1997. Mechanosensitive ion channels in osteoblasts: identification of a possible mechanotransduction pathway.In A. Sato, ed. Frontiers of Biological Science in Space. Molecular Mechanism of the Gravity Response in Cells, Taiyo Printing, pp. 22–34.

  • Edelmann, H.G. andSievers, A. 1995. Unequal distribution of osmiophilic particles in the epidermal periplasmic space of upper and lower flanks of gravi-responding rye coleoptiles. Planta196: 396–399.

    Article  PubMed  CAS  Google Scholar 

  • Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol.37: 165–186.

    Article  CAS  Google Scholar 

  • Gibeaut, D.M., Karuppiah, N., Chang, S. -R., Brock, T.G., Vadlamudi, B., Kim, D., Ghosheh, N.S., Rayle, D.L., Carpita, N.C. andKaufman, P.B. 1990. Cell wall and enzyme changes during graviresponse of the leafsheath pulvinus of oat (Avena sativa). Plant Physiol.94: 411–416.

    PubMed  CAS  Google Scholar 

  • Goodwin, W., Pallas, J.A. andJenkins, G.I. 1996. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced inBrassica napus. Plant Mol. Biol.31: 771–781

    Article  PubMed  CAS  Google Scholar 

  • Hager, A. 1996. Properties of a blue-light-absorbing photoreceptor kinase localized in the plasma membrane of the coleoptile tip region. Planta198: 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Hager, A., Menzel, H. andKrauss, A. 1971. Versuche und Hypothese zur Primarwirkund des Auxins beim Streckungswachstum. Planta100: 47–75.

    Article  CAS  Google Scholar 

  • Harada, K., Soga, K., Wakabayashi, K., Hoson, T. andKamisaka, S. 1997. Effect of hypergravity on growth of maize seedlings. Biol. Sci. Space11: 254–255 (in Japanese).

    Google Scholar 

  • Hartley, R.D. 1973. Carbohydrate esters of ferulic acid as components of cell walls ofLolium multiflorum. Phytochemistry12: 661–665.

    Article  CAS  Google Scholar 

  • Hayashi, T. 1989. Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol.40: 139–168.

    Article  CAS  Google Scholar 

  • Hirasawa, T., Takahashi, H., Suge, H. andIshihara, K. 1997. Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea (Pisum sativum L.). Plant Cell Environ.20: 381–386.

    Article  Google Scholar 

  • Hoa, L.V., Kuraishi, S. andSakurai, N. 1994. Aluminuminduced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol.106: 971–976.

    Google Scholar 

  • Hoson, T. 1991. Structure and function of plant cell walls: immunological approaches. Int. Rev. Cytol.130: 233–268.

    Article  CAS  Google Scholar 

  • Hoson, T. 1993. Regulation of polysaccharide breakdown during auxin-induced cell wall loosening. J. Plant Res.106: 369–381

    Article  CAS  Google Scholar 

  • Hoson, T. 1994. Automorphogenesis of maize roots under simulated microgravity conditions. Plant Soil165: 309–314.

    Article  CAS  Google Scholar 

  • Hoson, T., Kamisaka, S., Masuda, Y. andYamashita, M. 1992. Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. Tokyo105: 53–70.

    Article  Google Scholar 

  • Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M. andBuchen, B. 1997a. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta203: S187-S197.

    Article  PubMed  CAS  Google Scholar 

  • Hoson, T., Kamisaka, S., Yamamoto, R., Yamashita, M. andMasuda, Y. 1995a. Automorphosis of maize shoots under simulated microgravity on a three-dimensional clinostat. Physiol. Plant.93: 346–351.

    Article  CAS  Google Scholar 

  • Hoson, T., Kamisaka, S., Yamashita, M. andMasuda, Y. 1995b. Morphogenesis and cell wall changes in maize shoots under simulated microgravity conditions. Biol. Sci. Space9: 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Hoson, T., Kamisaka, S., Yamashita, M. andMasuda, Y. 1997b. Cell wall changes during automorphic curvature of maize shoots on a 3-D clinostat. Plant Physiol.114: S343.

    Google Scholar 

  • Hoson, T., Maeda, S., Sakaguchi, K., Onishi, H. andOhta, H. 1990. Changes in osmotic pressure and cell wall properties during auxin- and ethylene-induced growth of infact coleoptiles of rice. Physiol. Plant.78: 277–284.

    Article  CAS  Google Scholar 

  • Hoson, T., Nishitani, K., Miyamoto, K., Ueda, J., Kamisaka, S., Yamamoto, R. andMasuda, Y. 1996. Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J. Exp. Bot.47: 513–518.

    PubMed  CAS  Google Scholar 

  • Hoson, T. andWada, S. 1980. Role of hydroxyproline-rich cell wall protein in growth regulation of rice coleoptiles grown on or under water. Plant Cell Physiol.21: 511–524.

    CAS  Google Scholar 

  • Hoson, T. andWada, S. 1983. Possible role of hexosamine-containing cell wall component in growth regulation of rice coleoptiles. Plant Cell Physiol.24: 1421–1430.

    CAS  Google Scholar 

  • Hughes, M.A. andDunn, M.A. 1996. The molecular biology of plant acclimation to low temperature. J. Expt. Bot.47: 291–305.

    CAS  Google Scholar 

  • Iraki, N.M., Bressan, R.A., Hasegawa, P.M. andCarpita, N.C. 1989. Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic stress. Plant Physiol.91: 39–47.

    PubMed  CAS  Google Scholar 

  • Ishizawa, K. andEsashi, Y. 1984., Gaseous factors involved in the enhanced elongation of rice coleoptiles under water. Plant Cell Environ.7: 239–245.

    CAS  Google Scholar 

  • Itoh, K., Nakamura, Y., Kawata, H., Yamada, T., Ohta, E. andSakata, M. 1987. Effect of osmotic stress on turgor pressure in mung bean root cells. Plant Cell Physiol.28: 987–994.

    Google Scholar 

  • Iwami, S. andMasuda, Y. 1974. Geograpic response of cucumber hypocotyls. Plant Cell Physiol.15: 121–129.

    CAS  Google Scholar 

  • Jackson, M.B. 1985. Ethylene and responses of plants to soil waterlogging and submergency. Annu. Rev. Plant Physiol36: 145–174.

    Article  CAS  Google Scholar 

  • Jaffe, M.J. 1973. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation with special reference toBryonia dioica. Planta114: 143–157.

    Article  Google Scholar 

  • Jaffe, M.J., Telewski, F.W. andCooke, P.W. 1984. Thigmomorphogeneis: On the mechanical properties of mechanically pertubed, bean plants. Physiol. Plant.62: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, H., Shiwa, M., Takeuchi, Y. andYamada, M. 1995. Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls. J. Plant Res.108: 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman L.S. 1993. Transduction of blue-light signals. Plant Physiol.102: 333–337.

    PubMed  CAS  Google Scholar 

  • Kigel, J. andCosgrove, D.J. 1991. Photoinhibition of stem elongation by blue and red light. Effects of hydraulic and cell wall properties. Plant Physiol.95: 1049–1056.

    PubMed  CAS  Google Scholar 

  • Kutschera, U. 1989a. Tissue stresses in growing plant organs. Physiol. Plant77: 157–163.

    Article  Google Scholar 

  • Kutschera, U. 1989b. Growth, in-vivo extensibility and tissue tension in mung bean seedlings subjected to water stress. Plant Sci.61: 1–7.

    Article  Google Scholar 

  • Kutschera, U., Hoss, R., Frohlich, M. andHoson, T. 1993. Analysis of the growth response of air-grown rice coleoptiles to submergence. Bot. Acta106: 164–169.

    Google Scholar 

  • Kutschera, U. andKende, H. 1988. The biophysical basis of elongation growth in internodes of deepwater rice. Plant Physiol.88: 361–366.

    PubMed  Google Scholar 

  • Labrador, E., Rodriguez, D. andNicolas, G. 1987. Changes in cell wall composition of embryonic axes of germinatingCicer arietinum L. seeds: effects of abscisic acid and temperature. Plant Sci.48: 23–30.

    Article  CAS  Google Scholar 

  • Masuda, Y. 1990. Auxin-induced cell elongation and cell wall changes. Bot. Mag. Tokyo103: 345–370.

    Article  CAS  Google Scholar 

  • Masuda, Y., Kamisaka, S. and Hoson, T. 1998. Growth behaviour of rice coleoptiles. J. Plant Physiol. (in press).

  • Masuda, Y., Kamisaka, S., Yamamoto, R., Hoson, T. andNishitani, K. 1994a. Changes in the rheological properties of the cell wall of plant seedlings under simulated microgravity conditions. Biorheology31: 171–177.

    PubMed  CAS  Google Scholar 

  • Masuda, Y., Kamisaka, S., Yamamoto, R., Hoson, T. andNishitani, K. 1994b. Plant responses to simulated microgravity. Adv. Space Biol. Met.4: 111–126.

    Article  CAS  Google Scholar 

  • Masuda, Y., Kamisaka, S., Yanagisawa, H. andSuzuki, Y. 1981. Effect of light on growth and metabolic activities in pea seedings. I. Changes in cell wall polysaccharides during growth in the dark and in the light Biochem. Physiol. Pflanzen176: 23–34.

    CAS  Google Scholar 

  • Masuda, Y., Pjon, C. -J. andFuruya, M. 1970. Phytochrome action ofOryza sativa L. V. Effects of decapitation and red and far-red light on cell wall extensibility. Planta90: 236–242.

    Article  CAS  Google Scholar 

  • McNeil, M., Darvill, A.G., Fry S.C. andAlbersheim, P. 1984. Structure and function of the primary cell walls of plants. Annu. Rev. Biochem.53: 625–663.

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason, S., Durachko, D.M. andCosgrove, D.J. 1992. Two endogenous proteins that induced cell wall extension in plants. Plant Cell4: 1425–1433.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, K., Mitani, Y., Soga, K., Ueda, J., Wakabayashi, K., Hason, T., Kamisaka, S. andMasuda, Y. 1997. Modification of chemical properties of cell wall polysaccharides in the inner tissues by white light in relation to the decrease in tissue tension inPisum sativum epicotyls. Physiol. Plant.101: 38–44.

    Article  CAS  Google Scholar 

  • Miyamoto, K., Ueda, J., Hoson, T., Kamisaka, S. andMasuda, Y. 1992. Inhibition ofPisum sativum epicotyl elongation by white light-differential effects of light on the mechanical properties of cell walls in epidermis and inner tissues. Physiol. Plant.84: 380–385.

    Article  Google Scholar 

  • Miyamoto, K., Ueda, J., Ida, K., Hoson, T., Masuda, Y. andKamisaka, S. 1994. Light-induced increase in the contents of ferulic and diferulic acids in cell walls ofAvena coleoptiles-their relationships to growth inhibition by light. Physiol. Plant.92: 350–355.

    Article  CAS  Google Scholar 

  • Montague, M.J. 1995. Hormonal and gravitropic specificity in the regulation of growth and cell wall synthesis in pulvini and internodes from shoots ofAvena sativa L. (oat). Plant Physiol.107: 553–564.

    PubMed  CAS  Google Scholar 

  • Morgan, P.W. andDrew, M.C. 1997. Ethylene and plant responses to stress. Physiol. Plant.100: 620–630.

    Article  CAS  Google Scholar 

  • Morris, C.E. 1990. Mechanosensitive ion channels. J. Membr. Biol.113: 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Muñoz, F.J., Dopico, B. andLabrador, E. 1993a. Effect of osmotic stress on the growth of epicotyls ofCicer arientinum in relation to changes in cell wall composition. Physiol. Plant.87: 552–560.

    Article  Google Scholar 

  • Muñoz, F.J., Labrador, E. andDopico, B. 1993b. Effect of osmotic stress on the growth of epicotyls ofCicer arientinum in relation to changes in the autolytic process and glycanhydrolytic cell, wall enzymes. Physiol. Plant.87: 544–551.

    Article  Google Scholar 

  • Nedukha, E.M. 1996. Possible mechanisms of plant cell wall changes at microgravity. Adv. Space Res.17(6/7): 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, P.M. 1993. Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell Environ16: 1107–1114.

    Article  CAS  Google Scholar 

  • Neumann, P.M., Volkenburgh, E.V. andCleland, R.E. 1988. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility. Plant Physiol.88: 233–237.

    PubMed  CAS  Google Scholar 

  • Nishida, I. andMurata, N. 1996. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol.47:541–568.

    Article  PubMed  CAS  Google Scholar 

  • Nishitani, K. 1995. Endo-xyloglucan transferase, a new class of transferase involved in cell wall construction. J. Plant Res.108: 137–148.

    Article  CAS  Google Scholar 

  • Nishizaki, Y. 1996. Effects of blue light on electrical potential and turgor in pulvinar motor cells ofPhaseolus. J. Plant Res.109: 93–97.

    Article  CAS  Google Scholar 

  • Nonami, H. andBoyer, J.S. 1990. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. Plant Physiol.93: 1610–1619.

    PubMed  Google Scholar 

  • Okazaki, Y., Nishizaki, Y. andIwasaki, N. 1995. Effects of a pulse of blue light on the extracellular pH in the pulvinus ofPhaseolus vulgaris L.: measurements with a double-barreled pH-sensitive electrode. Plant Cell Physiol.36: 1131–1134.

    CAS  Google Scholar 

  • Parvez, M.M., Wakabayashi, K., Hoson, T. andKamisaka, S. 1996. Changes in cellular osmotic potential and mechanical properties of cell walls during light-induced inhibition of cell elongation in maize coleoptiles. Physiol. Plant.96: 179–185.

    Article  CAS  Google Scholar 

  • Parvez, M.M., Wakabayashi, K., Hoson, T. andKamisaka, S. 1997. White light promotes the formation of diferulic acid in maize coleoptile cell walls by enhancing PAL activity. Physiol. Plant.99: 39–48.

    Article  CAS  Google Scholar 

  • Parvez, M.M., Wakabayashi, K., Hoson, T. and Kamisaka, S. 1998. White light-induced sugar distribution controls growth and osmotic properties in the coleoptile and the first leaf inZea mays seedings. Physiol. Plant. (in press).

  • Polisensky, D.H. andBraam, J. 1996. Cold-shock regulation of the ArabidopsisCH genes and the effects of modulating intracellular calcium, levels. Plant Physiol.111: 1271–1279.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, J., Hetherington, P.R., Fry, S.C. andTomos, A.D. 1993. Xyloglucan endotransglycosylase activity, micrifibri orientation and the profiles of cell wall properties along growting regions of maize roots. J. Expt. Bot.44: 1281–1289.

    CAS  Google Scholar 

  • Rajashekar C.B. andLafta, A. 1996. Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol.111: 605–612.

    PubMed  CAS  Google Scholar 

  • Revilla, G. andZerra, I. 1987. Changes in the molecular weight distribution of the hemicellulosic polysaccharides from rice coleoptiles growing under different conditions. J. Exp. Bot.38: 1818–1825

    CAS  Google Scholar 

  • Reymond, P., Short, T.W. andBriggs, W.R. 1992. Blue light activates a specific protein kinase in higher plants. Plant Physiol.100: 655–661.

    PubMed  CAS  Google Scholar 

  • Sakurai, N. 1991. Cell wall functions in growth and development-a physical and chemical point of view. Bot. Mag. Tokyo104: 235–251.

    Article  Google Scholar 

  • Sakurai, N. andKuraishi, S. 1988. Water potential and mechanical properties of the cell wall of hypocotyls of dark-grown squash (Cucurbita maxima Duch.) under water stress conditions. Plant Cell Physiol.29: 1337–1343.

    Google Scholar 

  • Sakurai, N., Tanaka, S. andKuraishi S. 1987a. Changes in wall polysaccharides of squash (Cucurbita maxima Duch.) hypocotyls under water stress condition. I. Wall sugar composition and growth as affected by water stress. Plant Cell Physiol.28: 1051–1058.

    CAS  Google Scholar 

  • Sakurai, N., Tanaka, S. andKuraishi, S. 1987b. Changes in wall polysaccharides of squash (Cucurbita maxima Duch.) hypocotyls under water stress, condition. II. Composition of pectic and hemicellulosic polysaccharides. Plant Cell Physiol.28: 1059–1070.

    CAS  Google Scholar 

  • Sauter, M. andKende H. 1992. Levels of β-glucan and lignin in elongating internodes of deepwater, rice. Plant Cell Physiol.33: 1089–1097.

    CAS  Google Scholar 

  • Sawicka, T. andKacperska, A. 1994. Soluble and cell wall-associated β-galactosidase from cold-grown winter rape (Brassica napus L., var. oleifera L.) leaves. J. Plant Physiol.145: 357–362.

    Google Scholar 

  • Shen-Miller, J. andMasuda, Y. 1973. Kinetics of stress relaxation properties of oat coleoptile cell wall after geotropic stimulation. Plant Physiol.51: 464–467.

    PubMed  Google Scholar 

  • Shimmen, T. 1997. Studies on mechanoperception in characean cells: pharmacological analysis. Plant Cell Physiol.38: 139–148.

    CAS  Google Scholar 

  • Shinkle, J.R., Swoap, S.J., Simon, P. andJones R.L. 1992. Cell wall free space ofCucumis hypocotyls contains NAD and a blue light-regulated peroxidase activity. Plant Physiol.98: 1336–1341.

    PubMed  CAS  Google Scholar 

  • Shinozaki, K. andYamaguchi-Shinozaki, K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol.115: 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Short, T.W. andBriggs, W.R. 1994. The transduction of blue light signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.45: 143–171.

    Article  CAS  Google Scholar 

  • Sibaoka, T. 1991. Rapid plant movements triggered by action potentials. Bot. Mag. Tokyo104: 73–95.

    Article  Google Scholar 

  • Soga, K., Harada, K., Wakabayashi, K., Hoson, T. and Kamisaka, S. 1998. Growth inhibition of azuki bean and maize seedlings by hypergravity. Plant Cell Physiol. (abstract in press).

  • Spalding, E.P. andCosgrove, D.J. 1992. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta188: 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, L.A. andMoore, I. 1995. The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol.46: 261–288.

    CAS  Google Scholar 

  • Tabuchi, A., Kamisaka, S. andHoson, T. 1997. Purification of xyloglucan hydrolase/endotransferase from cell walls of azuki bean epicotyls. Plant Cell Physiol.38: 653–658.

    CAS  Google Scholar 

  • Takahashi, H. 1997. Hydrotropsim: the current state of our knowledge. J. Plant Res.110: 163–169.

    PubMed  CAS  Google Scholar 

  • Talbott, L.D. andPickard, B.G. 1994. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically respondingPisum sativum epicotyls. Plant Physiol.106: 755–761.

    PubMed  CAS  Google Scholar 

  • Tan, K. -S., Hoson, T., Masuda, Y. andKamisaka, S. 1991. Correlation between cell wall extensibility and the content of diferulic and ferulic acids in cell walls ofOryza sativa coleoptiles grown under water and in air. Physiol. Plant.83: 397–403.

    Article  CAS  Google Scholar 

  • Tan, K. -S., Hoson, T., Masuda, Y. andKamisaka, S. 1992. Involvement of cell wall-bound diferulic acid in light-induced decrease in growth rate and cell wall extensibility ofOryza coleoptiles. Plant Cell Physiol.33: 103–108.

    CAS  Google Scholar 

  • Tanimoto, E., andMasuda, Y. 1971. Role of the epidermis in auxin-induced elongation of light-grown pea stem segments. Plant Cell Physiol.12: 663–673.

    CAS  Google Scholar 

  • Valero, P. andLabrador, E. 1996. Effect of water stress on the LiCl extracted-cell wall proteins and glycanhydrolytic enzymes during growth ofCicer arietinum epicotyls. Plant Physiol. Biochem.34: 307–313.

    CAS  Google Scholar 

  • Wada, S. 1961. Growth patterns of rice coleoptile grown on water and under water. Sci. Rep. Tohoku Univ. 4th Ser.27: 199–207.

    Google Scholar 

  • Wakabayashi, K., Hoson, T. andKamisaka, S. 1997a. Osmotic stress-induced growth suppression of dark-grown wheat (Triticum aestivum L.) coleoptiles. Plant Cell Physiol.38: 297–303.

    CAS  Google Scholar 

  • Wakabayashi, K., Hoson, T. andKamisaka, S. 1997b. Osmotic stress suppresses cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles. Plant Physiol.113: 967–973.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Hoson, T. andKamisaka, S. 1997c. Changes in amounts and molecular mass distribution of cel-wall polysaccharides of wheat (Triticum aestivum L.) coleoptiles under water stress. J. Plant Physiol.151: 33–40.

    CAS  Google Scholar 

  • Wakabayashi, K., Hoson, T. andKamisaka, S. 1997d. Suppression of cell wall stiffening along coleoptiles of wheat (Triticum aestivum L.) seedlings grown under osmotic stress conditions. J. Plant Res.110: 311–316.

    Google Scholar 

  • Wakabayashi, K., Hoson, T. andKamisaka, S. 1997e. Abscisic acid suppresses the increases in cell wall-bound ferulic and diferulic acid levels in dark-grown wheat (Triticum aestivum L.) coleoptiles. Plant Cell Physiol.38: 811–817.

    CAS  Google Scholar 

  • Waldron, K.W. andBrett, C.T. 1990. Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J. Expt. Bot.41: 71–77.

    CAS  Google Scholar 

  • Weiser, R.L., Wallner, S.J. andWaddell, J.W. 1990. Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol.93: 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y., Sharp, R.E., Durachko, D.M. andCosgrove, D.J. 1996. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansins activity, and wall susceptibility to expansins. Plant Physiol.111: 765–772.

    PubMed  CAS  Google Scholar 

  • Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C. andBraam, J. 1995. ArabidposisTCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell7: 1555–1567.

    Article  PubMed  CAS  Google Scholar 

  • Zarra, I. andMasuda Y. 1979. Growth and cell wall changes in rice coleoptiles growing under different conditions. I. Changes in turgor pressure and cell wall polysaccharides during intact growth. Plant Cell Physiol.20: 1117–1124.

    CAS  Google Scholar 

  • Zhong, H. andLäuchli, A. 1993. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J. Expt. Bot.44; 773–778.

    CAS  Google Scholar 

  • Zwiazek, J.J. 1991. Cell wall changes in white spruce (Picea glauca) needles subjected to repeated drought stress. Physiol. Plant.82: 513–518.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoson, T. Apoplast as the site of response to environmental signals. J. Plant Res. 111, 167–177 (1998). https://doi.org/10.1007/BF02507163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507163

Key words

Navigation