Skip to main content
Log in

Auxin-induced cell elongation and cell wall changes

  • Invited Article
  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

It has been well known that auxin induces cell elongation through its effect on modifications of the cell wall. The present review will discuss cell wall modifications, physical and biochemical, as the background of the former, based on the experimental results from our laboratory and from others, with the historical background. Discussions will particularly put stress on the auxin effect on the cell wall in terms of the following studies, namely, (1) measurements of the mechanical property of the cell wall, and (2) biochemical studies on the polysaccharide molecules of the cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim, P.. 1976. The Primary Cell Wall.In J. Bonner and J.E. Varner, ed., Plant Biochemistry, 3ed., pp. 91–114. Academic Press, New York.

    Google Scholar 

  • Baker, D.B. andP.M. Ray. 1965. Relation between effects of auxin on cell wall synthesis and cell elongation. Plant Physiol.40: 360–368.

    PubMed  CAS  Google Scholar 

  • Black, M., C. Bullock, E.N. Chantler, R.A. Clarke, A.D. Hanson andG.M. Jolley. 1967. Effect of inhibitors of protein synthesis on the plastic deformation and growht of plant tissues. Nature215: 1289–1290.

    Article  CAS  Google Scholar 

  • Boroughs, H. andJ. Bonner. 1953. Effects of indoleacetic acid on metabolic pathways. Arch. Biochem. Biophys.46: 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Brauner, L. andM. Hasman. 1952. Weitere Untersuchungen über den Wirkungsmechanismus des Heteroauxins bei der Wasseraufnahme von Pflanzenparenchymen. Protoplasma41: 302–326.

    Article  Google Scholar 

  • Burström, H. 1942. The influence of heteroauxin on cell growth and root development. Ann. Agricult. Coll. Sweden10: 209–242.

    Google Scholar 

  • — 1953. Studies on growth and metabolism of roots. IX. Cell elongation and water absorption. Physiol. Plant.6: 262–276.

    Article  Google Scholar 

  • — 1958. The influence of growth regulators on the composition of the cell wall. Kungl. Fysiogr. Säll. Lund Förhandl.28: 53–64.

    Google Scholar 

  • Burström, H.G., I. Uhrström andR. Wurscher. 1967. Growth, turgor, water potential and Young's modulus in pea internodes. Physiol. Palnt.20: 213–231.

    Article  Google Scholar 

  • — 1971. Resonance frequency measurements on plant tissues. Endeavour30: 8790.

    Google Scholar 

  • Carpita, N.C.. 1984. Cell wall development in maize coleoptiles. Plant Physiol.76: 205–212.

    PubMed  CAS  Google Scholar 

  • Christiansen, G.S. andK.V. Thimann. 1950. The metabolism of stem tissue during growth and its inhibition. I. Carbohydrates. Arch. Biochem.26: 230–247.

    PubMed  CAS  Google Scholar 

  • Cleland, R.. 1958. A separation of auxin-induced cell wall loosening into its plastic and elastic components. Physiol. Plant.11: 599–609.

    Article  CAS  Google Scholar 

  • — 1959. Effect of osmotic concentration on auxin-action and on irreversible and reversible expansion of the Avena coleoptile. Physiol. Plant.12: 809–825.

    Article  Google Scholar 

  • — 1967. Extensibility of isolated cell walls: Measurement and changes during cell elongation. Planta74: 197–209.

    Article  CAS  Google Scholar 

  • — 1971. Cell wall extension. Ann. Rev. Plant Physiol.22: 197–222.

    Article  CAS  Google Scholar 

  • Cosgrove, D.. 1986. Biophysical, control of plant cell growth. Ann. Rev. Plant Physiol.37: 377–405.

    CAS  Google Scholar 

  • Cosgrove, D.J.. 1987a. Wall relaxation and the driving forces for cell expansive growth. Plant Physiol. (review)84: 561–564.

    CAS  Google Scholar 

  • — 1987b. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta171: 266–278.

    Article  PubMed  CAS  Google Scholar 

  • — andS.A. Sovonick-Dunford. 1989. Mechanism of gibberellin-dependent stem elongation in peas. Plant Physiol.89: 184–191.

    PubMed  CAS  Google Scholar 

  • Darvill, A.G., C.J. Smith andM.A. Hall. 1978. Cell wall structure and elongation growth inZea mays coleoptile tissue. New Phytol.80: 503–516.

    Article  CAS  Google Scholar 

  • De Vries, H.. 1874. Über die Dehnbarkeit wachsender Sprosse. Arbeit. d. Bot. Inst. Würzburg1: 519–545.

    Google Scholar 

  • Fry, S.C.. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann. Rev. Plant Physiol.37: 165–186.

    CAS  Google Scholar 

  • —. 1988. The Growing Plant Cell Wall: Chemical and Metabolis Analysis. Longman Sci. & Techn., Essex.

    Google Scholar 

  • Fry, S.T. 1989. Dissecting the complexities of the plant cell wall. Plants Today, pp. 126–132.

  • Fujihara, S., R. Yamamoto andY. Masuda. 1978. Viscoelastic properties of plant cell walls. I. Mathematical formulation for stress relaxation with consideration for pre-extension rate. Biorheol.15: 63–75.

    CAS  Google Scholar 

  • —,—and—. 1978. Viscoelastic properties of plant cell walls. II. Effect of pre-extension rate on stress relaxation. Biorheol.15: 77–85.

    CAS  Google Scholar 

  • —,—and—. 1978. Viscoelastic properties of plant cell walls. III. Hysteresis loop in the stress-strain curve at constant strain rate. Biorheol.15: 87–97.

    Google Scholar 

  • Furuya, M., Y. Masuda andR. Yamamoto. 1972. Effects of environmental factors on mechanical properties of the cell wall in rice coleoptiles. Developm. Growth & Differ.14: 95–105.

    Article  Google Scholar 

  • Gilkes, N.R. andM.A. Hall. 1977. The hormonal control of cell wall turnover inPisum sativum L. New Phytol.78: 1–15.

    Article  CAS  Google Scholar 

  • Goldberg, R.. 1980. Cell wall polysaccharidase activities and growht processes: A possible relationship. Physiol. Plant.50: 261–264.

    Article  CAS  Google Scholar 

  • Göring, H. andE. Reckin. 1968. Einfluss derd-Galactose auf den Kohlenhydratstoffwechsel pflanzlicher Gewebe. Flora159: 82–103.

    Google Scholar 

  • Gubler, F. andB.A. Stone. 1985. Release of ferulic acid esters from barley aleurone. II. Characterization of the feruloyl compounds released in response to GA3. Aust. J. Plant Physiol.12: 307–317.

    Article  CAS  Google Scholar 

  • Hager, A., H. Menzel andA. Krauss. 1971. Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta100: 47–75.

    Article  CAS  Google Scholar 

  • Hartley, R.D. andE.C. Jones. 1976. Diferulic acid as a component of cell walls ofLolium multiflorum. Phytochem.15: 1157–1160.

    Article  CAS  Google Scholar 

  • Haughton, P.M. andD.B. Sellen. 1969. Dynamic mechanical properties of the cell walls of some green algae. J. Exp. Bot.20: 516–535.

    Google Scholar 

  • Hayashi, T., Y.S. Wong andG.A. Maclachlan. 1984. Pea xyloglucan and cellulose. II. Hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol.75: 605–610.

    PubMed  CAS  Google Scholar 

  • Heyn, A.N.J. 1930. On the relation between growth and extensibility of the cell wall. Proc. Roy. Acad. Amsterdam33: 1045–1058.

    Google Scholar 

  • — 1931. Der Mechanismus der Zellstreckung. Rev. Trav. Bot. Neerl.28: 113–241.

    Google Scholar 

  • — andJ. van Overbeek. 1931. Weiteres Versuchsmaterial zur plastischen und elestischen Dehnbarkeit der Membran. Proc. Kon. Akad. Wetens. Amsterdam34: 1190–1195.

    Google Scholar 

  • — 1934. Die Plastizität der Zellmembran unter Einfluss von Wuchsstoff. Kon. Akad. Wetens. Amsterdam37: 180–182.

    Google Scholar 

  • — 1940. The physiology of cell elongation. Bot. Rev.6: 515–574.

    Article  CAS  Google Scholar 

  • Hoson, T. 1989. Significance of polysaccharide synthesis in cell wall loosening in rice coleoptiles grown under water.In M. Tazawaet al., ed., Plant Water Relations and Growth under Stress, pp. 365–368. Yamada Sci. Foundation.

  • — 1990a. Effect of auxin on autolysis of cell walls in azuki bean epicotyls. Plant Cell Physiol.31: 281–287.

    CAS  Google Scholar 

  • — 1990b. Auxin-regulated metabolic turnover of cell wall polysaccharides. Chemical Regul. in Plants25: 40–56 (in Japanese).

    CAS  Google Scholar 

  • Hoson, T. and Y. Masuda. 1986. Effects of lectins and sugar-recognizing antibodies on auxin-induced growth. Proc. Fourth Cell Wall Meeting, Paris., pp. 242–243.

  • ——. 1987. Effect of lectins on auxin-induced elongation and wall loosening in oat coleoptile and azuki bean epicotyl segments. Physiol. Plant.71: 1–8.

    Article  CAS  Google Scholar 

  • Hoson, T. and Y. Masuda. 1989. Antibodies and lectins specific for xyloglucans inhibit auxin-induced elongation of azuki bean epicotyls. Abstract of Fifth Cell Wall Meeting, S.C. Fry, C.T. Brett and J.S.G. Reid, ed., Edinburgh, p. 132.

  • — andD.J. Nevins. 1989a. Antibodies as probes for the study of location and metabolism of (1→3), (1→4)-β-d-glucans. Physiol. Plant.75: 452–457.

    Article  CAS  Google Scholar 

  • ——. 1989b. β-d-Glucan antibodies inhibit auxininduced cell elongation and changes in the cell wall ofZea coleoptile segments. Plant Physiol.90: 1353–1358.

    PubMed  CAS  Google Scholar 

  • ——., 1989c. Effect of anti-wall protein antibodies on auxin-induced elongation, cell wall loosening, and β-d-glucan degradation in maize coleoptile segments. Physiol. Plant.77: 208–215.

    Article  CAS  Google Scholar 

  • — andS. Wada. 1980. Role of hydroxyprolin-rich cell wall protein in growth regulation of rice coleoptiles grown on or under water. Plant Cell Physiol.21: 511–524.

    CAS  Google Scholar 

  • —— 1983. Possible role of hexosamine-containing cell wall component in growth regulation of rice coleoptiles. Plant Cell Physiol.24: 1421–1430.

    CAS  Google Scholar 

  • —— 1985. Tunicamycin-induced growth and inhibition of glucosamine incorporation into cell walls of rice coleoptiles. Physiol. Plant.64: 185–189.

    Article  CAS  Google Scholar 

  • Huber, D.J. andD.J. Nevins. 1980. β-d-Glucan hydrolase activity inZea coleoptile cell wall. Plant Physiol.65: 768–773.

    PubMed  CAS  Google Scholar 

  • ——. 1981. Partial purification of endoand exo-β-d-glucanase enzymes fromZea mays L. seedlings and their involvement in cell wall autohydrolysis. Planta151: 206–214.

    Article  CAS  Google Scholar 

  • Inouhe, M., R. Yamamoto andY. Masuda. 1984. Auxin-induced changes in the molecular weight distribution of cell wall xyloglucans inAvena coleoptiles. Plant Cell Physiol.25: 1341–1351.

    CAS  Google Scholar 

  • ———. 1986. Inhibition of IAA-induced cell elongation inAvena coleoptile segments by galactose: Its effect on UDP-glucose formation. Physiol. Plant.66: 370–376.

    Article  CAS  Google Scholar 

  • ———. 1987a. UDP-Glucose level as a limiting factor for IAA-induced cell elongation inAvena coleoptile segments. Physiol. Plant.69: 49–54.

    Article  CAS  Google Scholar 

  • ———. 1987b. Effects of indoleacetic acid and galactose on the UTP level and UDP-glucose formation inAvena coleoptile andVigna epicotyl segments. Physiol. Plant.69: 579–585.

    Article  Google Scholar 

  • Jacobs, M. andP.M. Ray. 1975. Promotion of xyloglucan metabolism by acid pH Plant Physiol.56: 373–376.

    PubMed  CAS  Google Scholar 

  • Jansen, E.F., R. Jang, P. Albersheim andJ. Bonner. 1960. Pectic metabolism of growing cell walls. Plant Physiol.35: 87–97.

    PubMed  CAS  Google Scholar 

  • Kamisaka, S. 1989. The structure and function of feruloylated polysaccharides in the cell wall. Chemical Regul. in Plants.24: 82–93 (in Japanese).

    CAS  Google Scholar 

  • —,H. Sano, M. Katsumi andY. Masuda. 1972. Effects of cyclic AMP and gibberellic acid on lettuce hypocotyl elongation and mechanical properties of its cell wall. Plant Cell Physiol.13: 167–173.

    CAS  Google Scholar 

  • —,S. Takeda, K. Takahashi andK. Shibata. 1990. Diferulic and ferulic acid in the cell wall ofAvena coleoptiles—Their relationships to mechanical properties of the cell wall. Physiol. Plant.78: 1–7.

    Article  CAS  Google Scholar 

  • Kamiya, N., M. Tazawa andT. Takata. 1963. The relation of turgor pressure to cell volume inNitella with special reference to mechanical properties of the cell wall. Protoplasma57: 501–521.

    Article  CAS  Google Scholar 

  • Kato, Y., N. Asano andK. Matsuda. 1977. Isolation of xyloglucans from etiolated Glycine max andVigna sesquipedalis hypocotyls. Plant Cell Physiol.18: 821–829.

    CAS  Google Scholar 

  • Kato, Y., J. Azuma and T. Koshijima. 1983. A new feruloylated trisaccharide from bagasse. Chem. Lett. 137–140.

  • —, andK. Matsuda. 1985. Xyloglucan in the cell walls of suspension-cultured rice cells. Plant Cell Physiol.26: 437–445.

    CAS  Google Scholar 

  • — andD.J. Nevins. 1984. Enzymic dissociation ofZea shoot cell wall polysaccharides. II. Dissociation of (1→3), (1→4)-β-d-glucan by purified (1→3), (1→4), β-d-glucan 4-glucanohydrolase fromBacillus subtilis. Plant Physiol.75: 745–752.

    PubMed  CAS  Google Scholar 

  • Katou, K. andM. Furumoto. 1986a. A mechanism of respirationdependent water uptake in higher plants. Protoplasma130: 80–82.

    Article  Google Scholar 

  • ——. 1986b. A mechanism of respirationdependent water uptake enhanced by auxin. Protoplasma133: 174–185.

    Article  CAS  Google Scholar 

  • Katsumi, M. andH. Kazama. 1978. Gibberellin control of cell elongation in cucumber hypocotyl sections. Bot. Mag. Tokyo, Sp. Issue1: 141–158.

    CAS  Google Scholar 

  • Katz, M. andL. Ordin. 1967. Metabolic turnover in cell wall constituents ofAvena sativa L. coleoptile sections. Biochem. Biophys. Acta141: 118–125.

    PubMed  CAS  Google Scholar 

  • Kawamura, H., S. Kamisaka andY. Masuda. 1976. Regulation of lettuce hypocotyl elongation by gibberellic acid. Correlation between cell elongation, stress-relaxation properties of the cell wall and wall polysaccharide content. Plant Cell Physiol.17: 23–34.

    CAS  Google Scholar 

  • Ketellapper, H.J. 1953. The mechanism of the action of indole-3-acetic acid on the water absorption byAvena coleoptile sections. Acta Bot. Neerl.2: 387–444.

    CAS  Google Scholar 

  • Keyes, G., M.E. Sorrells andT.L. Setter. 1990. Gibberellic acid regulates cell wall extensibility in wheat (Triticum aestivum L.). Plant Physiol.92: 242–245.

    PubMed  CAS  Google Scholar 

  • Kögl, F. 1956. Over de Invloed van Hetero-auxine op Biochemische Processen in de Kiemplant vanAvena sativa. Proc. Ned. Akad. Wet. Amsterdam59B: 231–241.

    Google Scholar 

  • Kutschera, U., R. Bergfeld andP. Schopfer. 1987. Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles. Planta170: 168–180.

    Article  CAS  Google Scholar 

  • — andW.R. Briggs. 1987. Differential effect of auxin on in vivo extensibility of cortical cylinder and epidermis in pea internodes. Plant Physiol.84: 1361–1366.

    PubMed  CAS  Google Scholar 

  • ——. 1988. Growth, in vivo extensibility, and tissue tension in developing pea internodes. Plant Physiol.86: 306–311.

    PubMed  Google Scholar 

  • — andP. Schopfer. 1986. Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles. Planta167: 527–535.

    Article  CAS  Google Scholar 

  • Labavitch, J.M. andP.M. Ray. 1974a. Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol.53: 669–673.

    PubMed  CAS  Google Scholar 

  • ——. 1974b. Relationship between promotion of xyloglucan metabolism and induction of elongation by indoleacetic acid. Plant Physiol.54: 499–502.

    PubMed  CAS  Google Scholar 

  • Labrador, E. andD.J. Nevins. 1989. An exo-β-d-glucanase derived fromZea coleoptile walls with a capacity to elicit cell elongation. Physiol. Plant.77: 479–486.

    Article  CAS  Google Scholar 

  • Lamport, D.T.A. 1970. Cell wall metabolism. Ann. Rev. Plant Physiol.21: 235–270.

    Article  CAS  Google Scholar 

  • Lee, S., A. Kivilaan andR.S. Bandurski. 1967. In vitro autolysis of plant cell walls. Plant Physiol.42: 968–972.

    PubMed  CAS  Google Scholar 

  • Lockhart, J.A. 1965. Cell extension.In J. Bonner and J.E. Varner, eds., Plant Biochemistry, pp. 826–849.

  • —,C. Bretz andR. Kenner. 1967. An analysis of cell wall extension. Ann New York Acad. Sci.144: 19–33.

    CAS  Google Scholar 

  • Loescher, W. andD.J. Nevins. 1972. Auxin-induced changes inAvena coleoptile cell wall composition. Plant Physiol.50: 556–563.

    PubMed  CAS  Google Scholar 

  • ——. 1973. Turgor-dependent changes inAvena coleoptile cell wall composition. Plant Physiol.52: 248–251.

    PubMed  CAS  Google Scholar 

  • Luttenegger, D.G. andD.J. Nevins. 1985. Transient nature of a (1→3), (1→4)-β-d-glucan inZea mays coleoptile cell walls. Plant Physiol.77: 175–178.

    PubMed  CAS  Google Scholar 

  • Masuda, Y. 1961. Effect of auxin and oxalic acid on the cell wall property ofAvena coleoptile. Plant Cell Physiol.2: 129–138.

    CAS  Google Scholar 

  • — 1968. Role of cell-wall-degrading enzymes in cellwall loosening in oat coleoptiles. Planta83: 171–184.

    Article  CAS  Google Scholar 

  • — 1969. Auxin-induced cell expansion in relation to cell wall extensibility. Plant Cell Physiol.10: 1–9.

    CAS  Google Scholar 

  • Masuda, Y. 1977. Wall extensibility in relation to auxin effects.In P.E. Pilet ed., Plant Growth Regulation, pp. 21–26, Springer-Verlag.

  • — 1978. Auxin-induced cell wall loosening. Bot. Mag. Special Issue1: 103–123.

    CAS  Google Scholar 

  • — 1985. Cell wall modifications during auxin-induced cell extension in monocotyledonous and dicotyledonous plants. Biol. Plant (Praha)27: 119–124.

    CAS  Google Scholar 

  • Masuda, Y., M. Inouhe andR. Yamamoto. 1989. Auxin-regulated extension growth of organ segments.In M. Tazawaet al. ed. Plant Water Relations and Growth under Stress, pp. 291–297, Yamada Sci. Foundation, Osaka.

    Google Scholar 

  • — andS. Wada. 1966. Requirement of RNA for the auxininduced elongation of oat coleoptile. Physiol. Plant.19: 1055–1063.

    Article  CAS  Google Scholar 

  • ——. 1967. Effect of β-(1, 3)-glucanase on the elongation growth of oat coleoptile. Bot. Mag.80: 100–102.

    CAS  Google Scholar 

  • — andR. Yamamoto. 1972. Control of auxin-induced stem elongation by the epidermis. Physiol. Plant.27: 109–115.

    Article  CAS  Google Scholar 

  • ——. 1985. Cell-wall changes during auxininduced cell extension. Mechanical properties and constituent polysaccharides of the cell wall.In C.T. Brett and J.R. Hillman ed., Biochemistry of Plant Cell Walls, pp. 269–300, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Masuda, Y., Y., R. Yamamoto and E. Tanimoto. 1971. Auxin-induced changes in cell wall properties and growth ofAvena coleoptiles and green pea epicotyls.In D.J. Carr ed., Plant Growth Substances, 1970, pp. 17–22, Springer-Verlag.

  • Matchett, W.H. andJ.F. Nance. 1962. Cell wall breakdown and growth in pea seedling stems. Amer. J. Bot.49: 311–319.

    Article  CAS  Google Scholar 

  • McDougall, G.J. andS.C. Fry. 1988. Inhibition of auxin-stimulated growth of pea stem segmets by a specific nonasaccharide of xyloglucan. Planta175: 412–416.

    Article  CAS  Google Scholar 

  • Morre, D.J. andJ. Bonner. 1965. A mechanical analysis of root growth. Physiol. Planta.18: 635–649.

    Article  CAS  Google Scholar 

  • Nakamura, T., S. Sekine, K. Arai andN. Takahashi. 1975. Effects of gibberellic acid and indole-3-acetic acid on stressrelaxation properties of pea hook cell wall. Plant Cell Physiol.16: 127–138.

    CAS  Google Scholar 

  • Nakamura, Y. andK. Hess. 1938. Zur Kenntniss der chemischen Zusammensetzung von Mais-Koleoptilen. Ber. Deut. Chem. Ges.71: 145–152.

    Google Scholar 

  • Nevins, D.J., P.D. English andP. Albersheim. 1968. Changes in cell wall polysaccharides associated with growth. Plant Physiol.43: 914–922.

    PubMed  CAS  Google Scholar 

  • — 1975a. The effect of nojirimycin on plant growth and its implications concerning a role for exo-β-glucanases in auxin-induced cell expansion. Plant Cell Physiol.16: 347–356.

    CAS  Google Scholar 

  • — 1975b. The in vitro simulation of IAA-induced modification ofAvena cell wall polysaccharides by an exo-glucanase. Plant Cell Physiol.16: 495–503.

    CAS  Google Scholar 

  • —,D.J. Huber, R. Yamamoto andW.H. Loescher. 1977. β-d-Glucan ofAvena coleoptile cell walls. Plant Physiol.60: 617–621.

    PubMed  CAS  Google Scholar 

  • —,R. Yamamoto andD.J. Huber., 1978. Cell wall β-d-glucans of five grass species. Phytochem.17: 1503–1505.

    Article  CAS  Google Scholar 

  • Nishitani, K. andY. Masuda. 1980. Modifications of cell wall polysaccharides during auxin-induced growth in azuki bean epicotyl segments. Plant Cell Physiol.21: 169–181.

    CAS  Google Scholar 

  • . 1981. Auxin-induced changes in the cell wall structure: Changes in the sugar compositions, intrinsic viscosity and molecular weight distribution of matrix polysaccharides of the epicotyl cell wall ofVigna angularis. Physiol. Plant.52: 482–494.

    Article  CAS  Google Scholar 

  • . 1983., Auxin-induced changes in the cell wall xyloglucans: Effects of auxin on the two different subfractions of xyloglucas in the epicotyl cell wall ofVigna angularis. Plant Cell Physiol.24: 345–355.

    CAS  Google Scholar 

  • . 1982/83. Acid pH-induced structural changes in cell wall xyloglucans inVigna angularis epicotyl segments. Plant Sci. Lett.28: 87–94.

    CAS  Google Scholar 

  • — andD.J. Nevins. 1988. Enzymic analysis of feruloylated arabinoxylans (Feraxan) derived fromZea mays cell walls. I. Purification of novel enzymes capable of dissociating Feraxan fragments fromZea mays coleoptile cell walls. Plant Physiol.87: 883–890.

    PubMed  CAS  Google Scholar 

  • . 1989. Enzymic analysis of feruoylated arabinoxylans (Feraxan) derived fromZea mays cells walls. II. Fractionation and partial characterization of Feraxan fragments dissociated byBacillus subtilis enzyme (Feraxanase). Plant Physiol.91: 242–248.

    PubMed  CAS  Google Scholar 

  • Nishitani, K. and D.J. Nevins. 1990. Enzyme analysis of feruloylated arabinoxylans (Feraxan) derived fromZea mays cell wall. III. Structural changes in the feraxan during coleoptile elongation. Plant Physiol.93 (in press).

  • O'Dwyer, M.H. 1926. The hemicelluloses. IV. The hemicelluloses of beech wood. Biochem. J.34: 656–664.

    Google Scholar 

  • — 1940. The hemicelluloses of the wood of English oak. The structure of hemicellulose B. Biochem. J.34: 149–152.

    PubMed  Google Scholar 

  • Olson, A.C., J. Bonner andD.J. Morré. 1965. Force extension analysis ofAvena coleoptile cell walls. Planta66: 126–134.

    Article  CAS  Google Scholar 

  • Okamoto, H., O. Liu, K. Nakahori and K. Katou. 1989. Control of elongation growth under osmotic and salt stress.In M. Tazawaet al. ed., Plant Water Relations and Growth under Stress, pp. 323–333, Yamada Sci. Foundation.

  • Ordin, L. andJ. Bonner. 1957. Effect of galactose on growth and metabolism of Avena coleoptile sections. Plant Physiol.32: 212–215.

    PubMed  CAS  Google Scholar 

  • R. Cleand andJ. Bonner 1956. Influence of auxin on cell-wall metabolism. Proc. Nat. Acad. Sci., U.S.A.41: 1023–1029.

    Article  Google Scholar 

  • . 1957. Methyl esterification of cell wall constituents under the influence of auxin. Plant Physiol.32: 216–220.

    PubMed  CAS  Google Scholar 

  • Pohl, R. 1957. Versuche zur Analyse des Wuchsstoff-Primäreffektes bei der Zellstreckung. Physiol. Plant.10: 681–696.

    Article  Google Scholar 

  • Preston, R.D. andJ. Hepton. 1960. The effect of inxoleacetic acid on cell wall extensibility inAvena coleoptiles. J. Exp. Bot.31: 13–27.

    Google Scholar 

  • Probine, M.C. andR.B. Preston. 1962. Cell growth and the structure and mechanical properties of the wall in internodal cells ofNitella opaca, L. J. Exp. Bot.13: 111–127.

    CAS  Google Scholar 

  • Ray, P.M. 1962. Cell wall synthesis and cell elongation in oat coleoptile tissue. Am. J. Bot.49: 928–939.

    Article  CAS  Google Scholar 

  • — 1963. Sugar composition of oat-coleoptile cell walls. Biochem. J.89: 144–150.

    PubMed  CAS  Google Scholar 

  • — 1967. Radioautographic study of cell wall deposition in growing plant cells. J. Cell Biol.35: 659–674.

    Article  PubMed  CAS  Google Scholar 

  • Rayle, D.L. 1973. Auxin-induced hydrogen ion secretion inAvena coleoptiles and its implications. Planta114: 63–67.

    Article  CAS  Google Scholar 

  • Revilla, G. andI. Zarra. 1987. Changes in the molecular weight distribution of the hemicellulosic polysaccharides from rice coleoptiles growing under different conditions. J. Exp. Bot.38: 1818–1825.

    CAS  Google Scholar 

  • Ruge, U. 1937. Zur Charakteristik einer für die Physiolgie der Zellstreckung wichtigen Intermicellarsubstanz planzlicher Membranen. Biochem. Zeits.295: 29–43.

    CAS  Google Scholar 

  • Sachs, J. 1882.Vorlesungen über Pflanzenphysiologie. Jena.

  • Sakurai, N., S. Fujihara, R. Yamamoto andY. Masuda. 1982. A stress-relaxation parmaeter b of the oat coleoptile cell wall and implication in cell wall loosening. J. Plant Growth Regul.1: 75–83.

    CAS  Google Scholar 

  • — andY. Masuda. 1977. Effect of indole-3-acetic acid on cell wall loosening: Changes in mechanical properties and noncellulosic glucose content ofAvena coleoptile cell wall. Plant Cell Physiol.18: 587–594.

    CAS  Google Scholar 

  • . 1987a. Auxin-induced changes in barley coleoptile cell wall composition. Plant Cell Physiol.19: 1217–1223.

    Google Scholar 

  • 1978b. Auxin-induced extension, cell wall loosening and changes in the wall polysaccharide content of barley coleoptile segments. Plant Cell Physiol.19: 1225–1233.

    CAS  Google Scholar 

  • —,D.J. Nevins andY. Masuda. 1977. Auxin- and hydrogen ion-induced cell wall loosening and cell extension inAvena coleoptile segments. Plant Cell Physiol.18: 371–380.

    CAS  Google Scholar 

  • —,K. Nishitani andY., Masuda. 1979. Auxin-induced changes in the molecular weight of hemicellulosic polysaccharides of theAvena coleoptile cell wall. Plant Cell Physiol.20: 1349–1357.

    CAS  Google Scholar 

  • Schulze, E. 1891. Zur Kenntniss der chemischen Zusamensetzung der pflanzlichen Zellmembranen. Ber. Deut. Chem. Ges.24: 2277–2287.

    Google Scholar 

  • Seara, J., G. Nicolas andE. Labrador. 1988. Autolysis of the cell wall. Its possibel role in endogenous and IAA-induced growth in epicotyls ofCicer arietinum. Physiol. Plant.72: 769–774.

    Article  CAS  Google Scholar 

  • Söding, H. 1931. Wachstum und Wanddehnbarkeit bei der Haferkoleoptile. Jahrb. f. wiss. Bot.74: 127–151.

    Google Scholar 

  • — 1932. Uber das Streckungswachstum der Zellwand. Ber. Deut. Bot. Ges.50: 117–122.

    Google Scholar 

  • Sone, Y., J. Kuramae, S. Shibuya andA. Misaki. 1989b. Immunochemical specificities of antibody to the heptasaccharide unit of plant xyloglucan. Agric. Biol. Chem.53: 2821–2823.

    CAS  Google Scholar 

  • Stinard, P.S. andD.J. Nevins. 1980. Distribution of noncellulosic β-d-glucans in grasses and other monocots. Phytochem.19: 1467–1468.

    CAS  Google Scholar 

  • Tagawa, T. andJ. Bonner. 1957. Mechanical properties of theAvena coleoptile as related to auxin and to ionic interactions. Plant Physiol.32: 207–212.

    PubMed  CAS  Google Scholar 

  • Taiz, L. 1984. Plant cell expansion: regulation of cell wall mechanical properties. Ann. Rev. Plant Physiol.35: 585–657.

    CAS  Google Scholar 

  • Talmadge, R.W., K. Keegstra, W.D. Bauer andP. Albersheim. 1973. The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol.51: 158–173.

    PubMed  CAS  Google Scholar 

  • Tanimoto, E. andM. Igari. 1976. Correlation between β-galactosidase and auxin-induced elongation growth in etiolated pea stems. Plant Cell Physiol.17: 673–682.

    CAS  Google Scholar 

  • — andY. Masuda. 1971. Role of the epidermis in auxin-induced elongation of light-grown pea stem segments. Plant Cell Physiol.12: 663–673.

    CAS  Google Scholar 

  • Taylor, A. andD.J. Gosgrove. 1989. Gibberellic acid stimulation of cucumber hypocotyl elongation. Effects on growth, turgor, osmotic pressure, and cell wall properties. Plant Physiol.90: 1335–1340.

    PubMed  CAS  Google Scholar 

  • Terry, M.E. andB.A. Bonner. 1980. An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of indoleacetic acid-induced growth. Plant Physiol.66: 321–325.

    PubMed  CAS  Google Scholar 

  • —,R.L. Jones andB.A. Bonner. 1981. Soluble cell wall polysaccharides released from pea stems by centrifugation. Plant Physiol.68: 531–537.

    PubMed  CAS  Google Scholar 

  • Thimann, K.V. andJ. Bonner 1933. The mechanisms of the action of the growth substance of plants. Proc. Roy. Soc. (London)113B: 126–149.

    Google Scholar 

  • — andC.L. Schneider. 1938. Differential growth in plant tissues. Amer. J. Bot.25: 627–641.

    Article  CAS  Google Scholar 

  • Tobollsky, A.V. andK. Murakami. 1959. Existence of a sharply defined maximum relaxation time for monodisperse polystyrene. J. Polymer Sci.40: 443–456.

    Article  Google Scholar 

  • Ursprung, A. andG. Blum. 1924. Eine Methode zur Messung des Wand- und Turgordruckes der Zelle, nebst Anwendung. Jb. Wiss. Bot.63: 1–110.

    Google Scholar 

  • van Overbeek, J. andF.W. Went. 1937. Mechanism and quantitative application of the pea test. Bot. Gaz.99: 22–41.

    Article  Google Scholar 

  • Virgin, H.I. 1955. A new method for the determination of the turgor of plant tissues. Physiol. Plant.8: 954–962.

    Article  Google Scholar 

  • Wada, S., E. Tanimoto andY. Masuda. 1968. Cell elongation and metabolic turnover of the cell wall as affected by auxin and cell wall degrading enzymes. Plant Cell Physiol.9: 369–396.

    CAS  Google Scholar 

  • Wiesner, J. 1892. Elementarstructur und Wachstum der lebendenSubstanz. Wien.

  • Wirth, P. 1946. Membranwachstum während der Zellstreckung. Ber. Schweiz. Bot. Ges.56: 175–207.

    CAS  Google Scholar 

  • Wong, Y.S., G.B. Fincher andG.A. MacLachlan 1977. Kinetic properties and substrate specificities of two cellulases from auxin-treated pea epicotyls. J. Biol. Chem.252: 1402–1407.

    PubMed  CAS  Google Scholar 

  • Yamagata, Y. andY. Masuda. 1975. Comparative studies on auxin and fusicoccin actions on plant growth. Plant Cell Physiol.16: 41–52.

    CAS  Google Scholar 

  • —,R. Yamamoto andY. Masuda. 1974. Auxin and hydrogen ion actions on light-grown pea epicotyl segments. II. Effect of hydrogen ions on extension of the isolated epidermis. Plant Cell Physiol.15: 833–841.

    CAS  Google Scholar 

  • Yamamoto, R., S. Fujihara and Y. Masuda. 1974c. Measurement of stress-relaxation properties of plant cell walls.In Plant Growth Substances, 1973, pp. 798-805. Hirokawa Publ. Co.

  • —,M. Inouhe andY. Masuda. 1988. Galactose inhibition of auxin-induced growth of mono- and dicotyledonous plants. Plant Physiol.86: 1223–1227.

    PubMed  CAS  Google Scholar 

  • —,H. Kawamura andY. Masuda. 1974b. Stress relaxation properties of the cell wall of growing intact plants. Plant Cell Physiol.15: 1073–1082.

    Google Scholar 

  • —,K. Maki andY. Masuda. 1974a. Auxin and hydrogen ion actions on light-grown pea epicotyl segments. III. Effect of auxin and hydrogen ions on stress-relaxation properties. Plant Cell Physiol.15: 1027–1038.

    CAS  Google Scholar 

  • —, andY. Masuda. 1971. Stress-relaxation properties of the Avena coleoptile cell wall. Physiol. Plant.25: 330–335.

    Article  CAS  Google Scholar 

  • . 1984a. Galactose inhibitin of auxininduced cell elongation in oat coleoptile segments. Physiol. Plant.61: 321–326.

    Article  CAS  Google Scholar 

  • Yamamoto, R. and Y. Masuda. 1984b. Auxin-induced modifications of cell wall polysaccharides in oat coleoptile segments. Effect of galactose.In W.M. Dugger and S. Bartnicki-Garcia, ed., Structure, Function, and Biosynthesis of Plant Cell Walls, pp. 284–301, Amer. Soc. Plant Physiol. Rookville.

  • —, andD.J. Nevins. 1978. Structural studies on the β-glucan of the Avena coleoptile cell-wall. Carbohydr. Res.67: 275–280.

    Article  CAS  Google Scholar 

  • 1981. Coleoptile growth-inducing capacities of exo-β-(1→3)-glucanases from fungi. Physiol. Plant.51: 118–122.

    Article  CAS  Google Scholar 

  • —,N. Sakurai andY. Masuda. 1981. Inhibition of auxin-induced cell elongation by galactose. Physiol. Plant.53: 543–547.

    Article  CAS  Google Scholar 

  • —,K. Shinozaki andY. Masuda. 1970. Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol.11: 947–956.

    CAS  Google Scholar 

  • Yoda, S. andJ. Ashida. 1958. Effect of gibberellin on the extensibility of the pea stem. Nature182: 879–880.

    Article  CAS  Google Scholar 

  • . 1960. Effects of gibberellin and auxin on the extensibility of the pea stem. Plant Cell Physiol.1: 99–105.

    Google Scholar 

  • York, W.S., A.G. Darvill andP. Albersheim. 1984. Inhibition of 2, 4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol.75: 295–297.

    Article  PubMed  CAS  Google Scholar 

  • Zarra, I. andY. Masuda. 1979. Growth and cell wall changes in rice coleoptiles growing under different conditions. II. Auxininduced growth in coleoptile segments. Plant Cell Physiol.20: 1125–1133.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is dedicated to Professor Anton N.J. Heyn for his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda, Y. Auxin-induced cell elongation and cell wall changes. Bot Mag Tokyo 103, 345–370 (1990). https://doi.org/10.1007/BF02488646

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488646

Key words

Navigation