Skip to main content
Log in

Thoughts about drying shrinkage: Experimental results and quantification of structural drying creep

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this second article, we examine in greater detail the influence of concrete skin micro-cracking, linked with the non-uniformity of water content within the specimen. This cracking is responsible for the drying creep which results from a structural effect, also called “microcracking effect”, and which we prefer to call “structural creep” here. It is defined as the difference between the potential drying shrinkage of a specimen which does not crack and the shrinkage measured experimentally. We propose a simple experimental method making use of experimental curves of drying shrinkage as a function of weight loss and allowing the flanking and specification of certain properties of structural drying creep. We shall see that this method must also deal, in the interpretation of results, with the choice of the mechanical constitutive model allowing the processing of nonlinearities induced by concrete skin micro-cracking. Finally, to validate the hypotheses we have made, we shall base our approach on a probabilistic model of the cracking of concrete resulting from the work of Rossi, “coupled” with consideration of the drying of the concrete material in a sense that we shall specify. We shall see that this model is in satisfactory agreement with the curves of shrinkage as a function of weight loss. In addition, the results of simulations are very instructive, as regards the spacing and the width as well as the depth of cracks which appear in the drying shrinkage and creep tests.

Résumé

Dans ce deuxième article, nous étudions plus en détail l'influence de la fissuration de peau du béton, liée à la non uniformité de la teneur en eau au sein de l'éprouvette. Cette fissuration est responsable de la part du fluage de dessiccation qui résulte d'un effet de structure, appelé aussi «micro-cracking effect» par les anglo-saxons, et que nous appellerons ici: «fluage structural». Il est défini comme la différence entre le retrait de dessiccation potentiel d'une éprouvette qui ne fissurerait pas et le retrait mesuré expérimentalement. Nous proposons ici une méthode expérimentale simple, qui met à profit les courbes expérimentales de retrait de dessiccation en fonction de la perte en poids et qui permet d'encadrer et de préciser certaines propriétés du fluage de dessiccation structural. Nous verrons que cette méthode se heurte, elle aussi, dans l'interprétation des résultats, au choix de la loi de comportement permettant de traiter les non linéarités induites par la fissuration de peau du béton. Enfin, pour valider les hypothèses que nous avons prises, nous appuierons notre démarche sur une modélisation probabiliste de la fissuration du béton issue des travaux de Rossi, «couplée» avec la prise en compte du séchage du matériau béton dans un sens que nous préciserons. Nous verrons que cette modélisation permet de retrouver, avec un accord satisfaisant, les courbes de retrait en fonction de la perte en poids. Qui plus est, les résultats des simulations sont très riches d'enseignements, tant sur l'espacement que sur l'épaisseur et la profondeur des fissures qui apparaissent sur les essais de retrait et de fluage de dessiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

subscript 0:

Reference state of the studied variable

t:

Time

x:

Spatial parameter

Ω, δΩ:

Elementary volume and surface of elementary volume

S:

Specimen section

R:

Specimen radius

C:

Water content in kg/m3

References

  1. Acker, P., Boulay, C. and Rossi, P., ‘On the importance of initial stresses in concrete and of the resulting mechanical effects’,Cement & Concrete Research,17 (1987) 788–764.

    Article  Google Scholar 

  2. Acker, P., ‘Comportement mécanique du béton: apports de l'approche physico-chimique’, Rapport de recherche LPC no 152 (1987).

  3. Acker, P., ‘Recommendation for measurement of time dependent strains of concrete loaded in compression’, Proc. of the 5th Int. RILEM Symp. on Creep and Shrinkage of Concrete, Barcelona, Edited by Z. P. Bažant and I. Carol (E & FN Spon, 1993) 849–858.

  4. Baroghel-Bouny, V., ‘Caractérisation microstructurale et hydrique des pâtes de ciment et de béton ordinaire et à hautes performances’, PhD thesis of ENPC (1994).

  5. Bažant, Z. P. and Najjar, L. J., ‘Nonlinear water diffusion in nonsaturated concrete’,Mater. Struct. 5 (1972) 3–20.

    Google Scholar 

  6. Bažant, Z. P., Sener, S. and Kim, J. K., ‘Effect of cracking on drying permeability and diffusivity of concrete’,ACI Materials Journal 84-M35 (1986) 351–357.

    Google Scholar 

  7. Bažant, Z. P. and Chern, J. C., ‘Stress-induced thermal and shrinkage strains in concrete’,J. of Engng. Mech. ASCE 113 (1987) 1493–1511.

    Article  Google Scholar 

  8. Bažant, Z. P., ‘Current status and advances in the theory of creep and interaction with fracture’, Proc. of the 5th Int. RILEM Symp. on Creep and Shinkage of Concrete. Barcelonna. Edited by Z. P. Bažant and I. Carol (E & FN Spon, 1993) 291–307.

  9. Bažant, Z. P. and Xi, Y., ‘Drying creep of concrete: constitutive model and new experiments separating its mechanisms’,Mater. Struct. 27 (1994) 3–14.

    Article  Google Scholar 

  10. Buil, M., ‘Étude numérique simplifiée de l'influence de l'effet de fissuration superficielle du béton dans des essais de fluage de dessiccation récents’,Mater. Struct. 23 (1990) 341–351.

    Article  Google Scholar 

  11. ConCreep 4, ‘Creep and shrinkage of concrete: Mathematical modeling’, Proc. of the 4th RILEM Int. Symposium, Bažant, Z. P. Editor, Evanston, USA (1986).

  12. de Larrard, F., Ithurralde, G., Acker, P. and Chauvel, D., ‘High-performance concrete for a nuclear containment’, 2nd Int. Conf. on Utilization of HSC, Berkeley, ACI SP (1990) 121–127.

  13. Elouard, A. and Ulm, F.-J., ‘TEXO/HEXO-PROB, notice d'utilisation’, Document CESAR-LCPC (1994).

  14. Granger, L., Acker, P. and Torrenti, J. M., ‘Discussion of “Drying creep of concrete: constitutive model and new experiments separating its mechanisms” by Z. P. Bažant and Y. Xi’,Mater. Struct. 27 (1994) 616–619.

    Article  Google Scholar 

  15. Granger, L., ‘Comportement différé du béton dans les enceintes de centrales nucléaires: Analyse et modélisation’, PhD thesis of ENPC (1995).

  16. Granger, L., Torrenti, J.-M. and Acker, P., ‘Thoughts about drying shrinkage: scale effect and modelling’,Mater. Struct. 30 (196) (1997) 96–105.

    Article  Google Scholar 

  17. Mensi, R., Acker, P. and Attolou, A., ‘Séchage du béton: analyse et modélisation’,Mater. Struct. 21 (1988) 3–10.

    Article  Google Scholar 

  18. Ollivier, J. P., ‘A non-destructive procedure to observe the microcracks of concrete by SEM’,Cement & Concrete Research 15 (1985) 1055–1060.

    Article  Google Scholar 

  19. Pihlajavaara, S. E., ‘Estimation of drying of concrete at different relative humidities and temperatures of ambient air with special discussion about fundamental features of drying and shrinkage’, in ‘Creep and Shrinkage in Concrete Structures’, Edited by Z. P. Bažant and F. H. Wittmann (J. Wiley & Sons, 1982) 87–108.

  20. Rossi, P. and Boulay, C., ‘Influence of free water in concrete on the cracking process’,Magazine of concrete Research 152 (1990) 143–146.

    Article  Google Scholar 

  21. Rossi, P., Wu, X., Le Maou, F. and Belloc, A., ‘Scale effect of concrete in tension’,Mater. Struct. 27 (1993) 437–444.

    Article  Google Scholar 

  22. Rossi, P. and Wu, X., ‘A probabilistic model for material behaviour analysis and appraisal of the structure of concrete’, Proc. of the 1st Bolomey Workshop on Numerical models in fracture mechanics of concrete, Zürich, July 1992 (F. H. Wittmann, Editor, Balkema, 1993) 207–221.

    Google Scholar 

  23. Rossi, P., Ulm, F. J. and Hachi, F., ‘Compressive behaviour of concrete: physical mechanisms and modelling’, 1994, Accepted for publication at ASCE.

  24. Sicard, V., François, R., Ringot, E. and Pons, G., ‘Influence of creep and shringage on cracking in high-strength concrete’,Cement & Concrete Research 22 (1992) 159–168.

    Article  Google Scholar 

  25. Thelandersson, S., Martensson, A. and Dahlblom, O., ‘Tension softening and cracking in drying concrete’,Mater. Struct. 21 (1988) 416–424.

    Article  Google Scholar 

  26. Toutlemonde, F., Granger, L., ‘Maitriser la rupture du béton: améliorations du matériau, progrès de la modélisation, exemples industriels’,Revue de métallurgie et cahiers techniques d'information, Série Science et génie des matériaux,92 (1995) 285–301.

    Google Scholar 

  27. Verbeck, G. J. and Helmuth, R. H., ‘Structures and physical properties of cement paste’, Proc. 5th Int. Symp. on Chemistry of Cement, Tokyo, Japan, 1968, 1–32.

  28. Wittmann, F. H., ‘On the influence of stress on shrinkage of concrete’, Proc. of the 4th Int. RILEM Symp. on Creep and Shinkage of Concrete, Barcelona, Edited by Z. P. Bažant and I. Carol (E & FN Spon, 1993) 151–157.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Dr. L. Granger is a RILEM Affiliate Member. He is active in Technical Committee 160-MLN on Methodology for Life prediction of concrete structures in Nuclear power plants. Dr. J.-M. Torrenti works at the CEA, which is a RILEM Titular Member. Dr. P. Acker is a RILEM Senior Member. Dr. Acker is the Secretary of TC 161-GMC, Modelling the behaviour of Concrete in Service: a Guide for the Engineer. He is active in Technical Committee 107-CSP on Creep and Shrinkage Prediction models and 119-TCE on Avoidance of Thermal Cracking at Early ages. He is a member of the Editorial Group of TC 090-FMA on Fracture Mechanics of concrete-Applications, and a Corresponding Member of TCs 114-CCS on Computer programmes for Creep and Shrinkage prediction models and 123-MME on Use of Microstructural Models and Expert systems for cementitious materials. Dr. Acker is the RILEM National Delegate for France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granger, L., Torrenti, J.M. & Acker, P. Thoughts about drying shrinkage: Experimental results and quantification of structural drying creep. Mat. Struct. 30, 588–598 (1997). https://doi.org/10.1007/BF02486900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486900

Keywords

Navigation