Skip to main content
Log in

The electrophysiology of single smooth muscle cells isolated from the ctenophoreMnemiopsis

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

  1. 1.

    Single, giant, smooth muscle cells were isolated enzymatically from longitudinal muscle bundles in the ctenophoreMnemiopsis. The isolation procedure produced fragments of in situ cells and their lengths ranged from 100 μm to several millimeters. The cut ends of the fibers resealed readily and the input impedances of the isolated cells remained high.

  2. 2.

    Intracellular recordings were obtained from in situ fibers and used as a baseline to compare with data from isolated cells. In situ fibers had negative resting potentials (−60 mV) and produced fast overshooting action potentials when depolarized. The resting potentials and action potential parameters of the isolated cells were essentially similar.

  3. 3.

    Isolated cells were very permeable to Cl ions but in Cl-free media the resting potential was K+ dependent.

  4. 4.

    The action potential in the isolated cell could be partially blocked by D-600, verapamil and Cd++, implying that there is a Ca++ component to the spike. Furthermore, spike amplitude was decreased when external Na+ was reduced, suggesting that there is also a Na+ dependency.

  5. 5.

    Repolarization was achieved by a TEA- and 4-AP-sensitive, K+ efflux, part of which passed through Ca+-activated channels. The 4-AP sensitive component gave rise to an after-depolarization that may have arisen because of extracellular accumulation of K+. Each action potential was associated with a discrete contraction from the fiber and when spike duration was increased, the twitches became very obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASW :

artificial sea water

SW :

sea water

TEA :

tetraethylammonium

TTX :

tetrodotoxin

STX :

saxitoxin

4-AP :

4-aminopyridine

References

  • Adams DJ, Smith SJ, Thompson SH (1980) Ionic currents in molluscan soma. Annu Rev Neurosci 3: 141–167

    Article  PubMed  CAS  Google Scholar 

  • Aldrich RW, Getting PA, Thompson SH (1979) Mechanisms of frequency-dependent broadening of molluscan neurone soma spikes. J Physiol 291: 531–544

    PubMed  Google Scholar 

  • Anderson PAV, Schwab WE (1982) Recent advances and model systems in coelenterate neurobiology. Prog Neurol 19: 213–236

    Article  CAS  Google Scholar 

  • Bregestovski PD, Miledi R, Parker I (1980) Blocking of frog endplate channels by the organic calcium antagonist D-600. Proc R Soc Lond [B] 211: 15–24

    Article  CAS  Google Scholar 

  • Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294: 752–754

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1957) The action of calcium on the electrical properties of squid axons. J Physiol (London) 137: 218–244

    CAS  Google Scholar 

  • Geduldig D, Junge D (1968) Sodium and calcium components of action potentials in theAplysia giant neurone. J Physiol (London) 199: 347–365

    CAS  Google Scholar 

  • Greve W (1968) The “Plankton Kreisel”, a new device for culturing zooplankton. Mar Biol 1: 201–203

    Article  Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Annu Rev Neurosc 4: 69–125

    Article  CAS  Google Scholar 

  • Hernandez-Nicaise M-L (1973a) Le système nerveux des cténaires. I. Structure et ultrastructure des réseaux épitheliaux. Z Zellforsch 137: 223–250

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise M-L (1973b) Le système nerveux des cténaires. II. Les éléments nerveux intra-mésogléens chez les béroides et les cydippidés. Z Zellforsch 143: 117–133

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise M-L (1973c) The nervous system of ctenophores. III. Ultrastructure of synapses. J Neurocytol 2: 249–263

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise M-L, Amsellem J (1980) Ultrastructure of the giant smooth muscle fiber of the CtenophoreBeroe ovata. J Ultrastruct Res 72: 151–168

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise M-L, Mackie GO, Meech RW (1980) Giant smooth muscle cells ofBeroe. Ultrastructure, innervation, and electrical properties. J Gen Physiol 75: 79–105

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise M-L, Nicaise G, Anderson PAV (1981) Isolation of giant smooth muscle cells from the ctenophoreMnemiopsis. Am Zool 21: 1012

    Google Scholar 

  • Hernandez-Nicaise M-L, Bilbaut A, Malaval L, Nicaise G (1982) Isolation of functional giant smooth muscle cells from an invertebrate: Structural features of relaxed and contracted fibers. Proc Natl Acad Sci USA 79: 1884–1888

    Article  PubMed  CAS  Google Scholar 

  • Hino N, Ochi R, Yanagisawa T (1982) Inhibition of the slow inward current and the time-dependent outward current of mammalian ventricular muscle by gentamicin. Pflügers Arch 394: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibers. J Physiol (London) 148: 127–160

    CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon ofLogigo. J Physiol (London) 116: 473–495

    CAS  Google Scholar 

  • Hoffmann R, Gross L (1975) Modulation contrast microscope. Appl Opt 14: 1169–1176

    Google Scholar 

  • Hyman LH (1940) The Invertebrates: Protozoa through Ctenophora. McGraw-Hill, New York

    Google Scholar 

  • Johansson B, Somlyo AP (1980) Electrophysiology and excitation-contraction coupling. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology, cardiovascular system II. American Physiological Society, Bethesda, Maryland, pp 301–323

    Google Scholar 

  • Keatinge WR (1968) Sodium flux and electrical activity of arterial smooth muscle. J Physiol (London) 194: 183–200

    CAS  Google Scholar 

  • Lee KS, Akaike N, Brown AM (1977) Trypsin inhibits the action of tetrodotoxin in neurons. Nature 265: 751–753

    Article  PubMed  CAS  Google Scholar 

  • Meech RW (1976) Intracellular calcium and the control membrane permeability. Symp Soc Exp Biol XXX: 161–191

    Google Scholar 

  • Mironneau J, Eugene D, Mironneau C (1982) Sodium action potentials induced by calcium chelation in rat uterine smooth muscle. Pflügers Arch 395: 232–238

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47: 965–974

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T (1974) Chemicals as tools in the study of excitable membranes. Physiol Rev 54: 813–890

    Article  PubMed  CAS  Google Scholar 

  • Prosser CL (1980) Evolution and diversity of nonstriated muscle. In: Bohr DF, Somylo AP, Sparks, HV (eds), Handbook of physiology, cardiovascular system II. American Physiological Society, Bethesda, Maryland, pp 635–670

    Google Scholar 

  • Prosser CL (1982) Diversity of narrow-fibered and wide-fibered muscles. In: Twarog BM, Levine RJC, Dewey MN (eds) Basic biology of muscles: A comparative approach. Raven Press, New York, pp 381–397

    Google Scholar 

  • Singer JJ, Walsh JV Jr (1980a) Passive properties of the membrane of single freshly isolated smooth muscle cells. Am J Physiol 239: C153-C161

    PubMed  CAS  Google Scholar 

  • Singer JJ Walsh JV Jr (1980b) Rectifying properties of the membrane of single freshly isolated smooth muscle cells. Am J Physiol 239: C175-C181

    PubMed  CAS  Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dyecoupling with a highly fluorescent tracer. Cell 14: 741–759

    Article  PubMed  CAS  Google Scholar 

  • Tomita T (1975) Electrophysiology of mammalian smooth muscle. Prog Biophys Mol Biol 30: 185–203

    Article  PubMed  CAS  Google Scholar 

  • Van Bogaert PP, Snyders DJ (1982) Effects of 4-aminopyridine on inward rectifying and pacemaker currents of cardiac Purkinje fibres. Pflügers Arch 394: 230–238

    Article  PubMed  Google Scholar 

  • Walsh JV Jr, Singer JJ (1980a) Calcium action potentials in single freshly isolated smooth muscle cells Am J Physiol 239: C162-C174

    PubMed  CAS  Google Scholar 

  • Walsh JV Jr, Singer JJ (1980b) Penetration-induced hyperpolarization as evidence for Ca2+ activation of K+ conductance in isolated smooth muscle cells. Am J Physiol 239: C182-C189

    PubMed  CAS  Google Scholar 

  • Wilkens LA (1970) Electrophysiological studies on the heart of bivalve molluscModiolus demissus. PhD thesis, Florida State University

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, A.V. The electrophysiology of single smooth muscle cells isolated from the ctenophoreMnemiopsis . J Comp Physiol B 154, 257–268 (1984). https://doi.org/10.1007/BF02464405

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464405

Keywords

Navigation