Skip to main content
Log in

Langevin equation, Fokker-Planck equation and cell migration

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cell migration can be characterized by two independent variables: the speed,v, and the migration angle, ϕ. Each variable can be described by a stochastic differential equation—a Langevin equation. The migration behaviour of an ensemble of cells can be predicted due to the stochastic processes involved in the signal transduction/response system of each cell. Distribution functions, correlation functions, etc. are determined by using the corresponding Fokker-Planck equation. The model assumptions are verified by experimental results. The theoretical predictions are mainly compared with the galvanotactic response of human granulocytes. The coefficient characterizing the mean effect of the signal transduction/response system of the cell is experimentally determined to 0.08 mm/V sec (galvanotaxis) or 0.7 mm/sec (chemotaxis) and the characteristic time characterizing stochastic effects in the signal transduction/response system is experimentally determined as 30 sec. The temporal directed response induced by electric field pulses is investigated: the experimental cells react slower but are more sensitive than predicted by theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Alt, W. 1990. Correlation analysis of two-dimensional locomotion paths. InLecture Notes in Biomathematics. Biological Motion, W. Alt and G. Hoffmann (eds), pp. 254–268. Berlin, Heidelberg: Springer Verlag.

    Google Scholar 

  • de Boisfleury-Chevance, A., B. Rapp and H. Gruler. 1989. Locomotion of white blood cells: A biophysical analysis.Blood Cells 15, 315–333.

    Google Scholar 

  • Dunn, G. A. and A. F. Brown. 1987. A unified approach to characterizing cell motility.J. Cell Sci. Suppl. 8, 81–102.

    Google Scholar 

  • Franke, K. and H. Gruler. 1990. Galvanotaxis of human granulocytes: electric field jump studies.Eur. Biophys. J. 18, 335–346.

    Article  Google Scholar 

  • Franke, K. and H. Gruler. 1992. Directed cell movement in pulsed electric fields. To be published.

  • Gruler, H. 1984. Cell movement analysis in a necrotactic assay.Blood Cells 10, 107–121.

    Google Scholar 

  • Gruler, H. and B. Bültmann. 1984. Analysis of cell movement.Blood Cells 10, 61–77.

    Google Scholar 

  • Gruler, H. and Nuccitelli. 1986. New insights into galvanotaxis and other directed cell movements. InIonic Currents in Development, R. Nuccitelli (ed.), pp. 337–347. New York: A. R. Liss Inc.

    Google Scholar 

  • Gruler H. and A. de Boisfleury-Chevance. 1987. Chemokinesis and necrotaxis of human granulocytes: the important cellular organelles.Z. Naturforsch. 42c, 1126–1134.

    Google Scholar 

  • Gruler, H. 1988. Cell movement and symmetry of the cellular environment.Z. Naturforsch. 43c, 754–764.

    Google Scholar 

  • Gruler, H. 1989. Biophysics of leukocytes: neutrophil chemotaxis, characteristics, and mechanisms. InThe Neutrophil: Cellular Biochemistry and Physiology, I. Hellett (ed.), pp. 63–95. Boca Raton, Florida: CRC Press Inc.

    Google Scholar 

  • Gruler, H. 1990. Chemokinesis, chemotaxis and galvanotaxis. Dose-response curves and signal chains. InLecture Notes in Biomathematics. Biological Motion, W. Alt and G. Hoffmann (eds), pp. 396–414. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Gruler, H. and K. Franke. 1990 Automatic control and directed movement.Z. Naturforsch. 45c, 1241–1249.

    Google Scholar 

  • Gruler, H. and N. A. R. Gow. 1990. Directed growth of fungal hyphae in an electric field.Z. Naturforsch. 45c 306–313.

    Google Scholar 

  • Gruler, H. and R. Nuccitelli. 1991. Neural crest cell galvanotaxis: new data and novel approach to the analysis of both galvanotaxis and chemotaxis.Cell Mot. Cytoskel. 19, 121–133.

    Article  Google Scholar 

  • Rapp, B., A. de Boisfleury-Chevance and H. Gruler. 1988. Galvanotaxis of human granulocytes. Dose-response curve.Eur. Biophys. J. 16, 313–319.

    Article  Google Scholar 

  • Risken, H. 1984.The Fokker-Planck Equation. Heidelberg Springer Verlag.

    Google Scholar 

  • Scharstein, H. and W. Alt. 1990. The influence of discrete position measurements on the correlation analysis of 2-dimensional tracks. InLecture Notes in Biomathematics. Biological Motion, W. Alt and G. Hoffmann (eds), pp. 278–280. Berlin, Heidelberg: Springer Verlag.

    Google Scholar 

  • Stokes, C. L., D. A. Lauffenburger and S. K. Williams. 1990. Endothelial cell chemotaxis in angiogenesis. InLecture Notes in Biomathematics. Biological Motion, W. Alt and G. Hoffmann (eds), pp. 442–452. Berlin, Heidelberg: Springer Verlag.

    Google Scholar 

  • Tranquillo, R. T. and D. A. Lauffenburger. 1987. Stochastic model of leukocytes chemosensory movement.J. math. Biol. 25, 229–262.

    Article  MATH  MathSciNet  Google Scholar 

  • Tranquillo, R. T., S. H. Zigmond and D. A. Lauffenburger. 1988. Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay.Cell Mot. Cytoskel. 11, 1–15.

    Article  Google Scholar 

  • Trinkaus, J. P. 1984.Cells into Organs. Englewood Cliffs, New Jersey: Prentice Hall Inc.

    Google Scholar 

  • Wiener, N. 1961.Cybernetics: Or Control and Communication in Animal and the Machine. Cambridge: MIT Press.

    Google Scholar 

  • Wilkinson, P. C. 1982.Chemotaxis and Inflammation. London: J. & A. Churchill.

    Google Scholar 

  • Zigmond, S. H. 1977. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors.J. cell Biol. 75, 606–616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schienbein, M., Gruler, H. Langevin equation, Fokker-Planck equation and cell migration. Bltn Mathcal Biology 55, 585–608 (1993). https://doi.org/10.1007/BF02460652

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460652

Keywords

Navigation