Skip to main content
Log in

Stochastic model of leukocyte chemosensory movement

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose a hypothesis for a unified understanding of the persistent and biased random walk behavior of leukocytes exhibiting random motility and chemotaxis, respectively. This hypothesis is based on a description of the leukocyte as an integrated system sensing and responding to a “noisy” receptor signal: random fluctuations inherent in receptor-sensing of chemoattractant concentrations underlie the random walk behavior. Noise arises from real fluctuations in the receptor binding process, which translate into perceived fluctuations in receptor-measured concentration. The unbiased random walk characteristic of random motility arises from perceived fluctuating gradients without a mean reference direction and the biased random walk in chemotaxis arises due to the occurrence of perceived concentration fluctuations around the mean gradient.

Analysis of a stochastic model based on this hypothesis yields an objective index of directional randomness in random motility, the directional persistence time, in terms of model parameters associated with receptor binding, receptor signal transduction, and the cell turning response. Simulation of the model equations yields cell paths from which the orientation behavior in a chemoattractant gradient is characterized in terms of the same model parameters. Our results provide a theoretical relationship between directional persistence and orientation bias and suggest quantitative answers to the questions: Is there an optimal level of persistence with respect to maximizing orientation bias? Do directional persistence and orientation bias both display the same parametric sensitivity? How does this sensitivity depend on the sensing, transduction, and response components of the cell system?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, R. B., Wilkinson, P. C.: A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leucocytes. Exp. Cell Res. 111, 191–203 (1978)

    Google Scholar 

  • Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)

    Google Scholar 

  • Del Grosso, G., Marchetti, F.: Limit theorems in stochastic biochemical modeling. Math. Biosci. 66, 157–165 (1983)

    Google Scholar 

  • DeLisi, C., Wiegel, F. W.: Effect of nonspecific forces and finite receptor number on rate constants of ligand-cell bound-receptor interactions. Proc. Natl. Acad. Sci. USA 78, 5569–5572 (1981)

    Google Scholar 

  • Dembo, M., Harlow, F. J., Alt, W.: The biophysics of cell surface motility. In: Perelson, A., DeLisi, C., Wiegel, F. (eds.) Cell surface dynamics: concepts and models, pp. 495–543. Marcel Dekker: New York 1984

    Google Scholar 

  • Dunn, G. A.: Chemotaxis as a form of directed cell behavior: some theoretical considerations. In: Lackie, J. M., Wilkinson, P. C. (eds.) Biology of the chemotactic response, pp. 1–26. Cambridge: Cambridge University Press 1981

    Google Scholar 

  • Dunn, G. A.: Characterizing a kinesis response: time averaged measures of cell speed and directional persistence. Agents and Actions Suppl. 12, 14–33 (1983)

    Google Scholar 

  • Fisher, P. R., Grant, W. N., Dohrmann, U., Williams, K. L.: Spontaneous turning behaviour by dictyostelium discoideum slugs. J. Cell. Sci. 62, 161–170 (1983)

    Google Scholar 

  • Gail, M. H., Boone, C. W.: The locomotion of mouse fibroblasts in tissue culture. Biophys. J. 10, 980–993 (1970)

    Google Scholar 

  • Gardiner, C. W.: Handbook of stochastic methods for physics, chemistry and the natural sciences. New York-Heidelberg-Berlin: Springer 1983

    Google Scholar 

  • Gerisch, G., Keller, H. U.: Chemotactic reorientation of granulocytes stimulated with micropipettes containing f-met-leu-phe. J. Cell. Sci. 52, 1–10 (1981)

    Google Scholar 

  • Gihman, I. I., Skorohod, A. V.: Introduction to the theory of random processes. Philadelphia: Saunders 1969

    Google Scholar 

  • Hall, R. L.: Amoeboid movement as a correlated walk. J. Math. Biol. 4, 327–335 (1977)

    Google Scholar 

  • Keller, H. U., Wilkinson, P. C., Abercrombie, M., Beker, E. L., Hirsch, J. G., Miller, M. E., Ramsey, W. S., Zigmond, S. H.: A proposal for the definition of terms related to locomotion of leukocytes and other cells. Clin. Exp. Immunol. 27, 377–380 (1977)

    Google Scholar 

  • Krenner, A. J., Lobry, C.: The complexity of stochastic differential equations. Stochastics 4, 193–203 (1981)

    Google Scholar 

  • Kurtz, T. G.: Approximation of population processes. Philadelphia: SIAM 1981

    Google Scholar 

  • Lackie, J. M., Burns, M. D.: Leucocyte locomotion: Comparison of random and directed paths using a modified time-lapse film analysis. J. Immunol. Meth. 62, 109–122 (1983)

    Google Scholar 

  • Lackie, J. M., Wilkinson, P. C.: Adhesion and locomotion of neutrophil leukocytes on 2-D substrata and in 3-D matrices. In: White cell mechanics: basic science and clinical aspects, pp. 237–254. New York: Liss 1984

    Google Scholar 

  • Lauffenburger, D. A.: Influence of external concentration fluctuations on leukocyte chemotactic orientation. Cell Biophys. 4, 177–209 (1982)

    Google Scholar 

  • Lauffenburger, D. A.: Measurement of phenomenological parameters for leukocyte random motility and chemotaxis. Agents Actions Suppl. 12, 34–53 (1982)

    Google Scholar 

  • Lauffenburger, D. A.: Transport vs. reaction-limitation in receptor-ligand binding: Consequences for chemosensory cell behavior. Presented at: The 1985 Annual AIChE Meeting, Chicago, November 10–15, 1985

  • Maher, J., Martell, J. V., Brantley, B. A., Cox, E. B., Neidel, J. E., Rosse, W. F.: The response of human neutrophils to a chemotactic tripeptide (N-formyl-methionyl-leucyl-phenylalanine) studied by microcinematography. Blood 64, 221–228 (1984)

    Google Scholar 

  • Mardia, K. V.: Statistics of directional data. New York: Academic Press 1972

    Google Scholar 

  • Mil'shtein, G. N.: Approximate integration of stochastic differential equations. Theor. Probab. 19, 557–562 (1974)

    Google Scholar 

  • Nossal, R., Zigmond, S. H.: Chemotropism indices for polymorphonuclear leukocytes. Biophys. J. 16, 1171–1182 (1976)

    Google Scholar 

  • Oster, G. F., Perelson, A. S.: Cell spreading and motility. J. Math. Biol. 21, 383–388 (1985)

    Google Scholar 

  • Pardoux, E., Talay, D.: Discretization and simulation of stochastic differential equations. Acta Applicandae Math. 3, 23–47 (1985)

    Google Scholar 

  • Ramsey, W. S.: Analysis of individual leukocyte behavior during chemotaxis. Exptl. Cell Res. 70, 129–139 (1972)

    Google Scholar 

  • Rumelin, W.: Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19, 604–613 (1982)

    Google Scholar 

  • Shields, J. M., Haston, W. S.: Behavior of neutrophil leucocytes in uniform concentrations of chemotactic factors: contraction waves, cell polarity, and persistence. J. Cell Sci. 74, 75–93 (1985)

    Google Scholar 

  • Soong, T. T.: Random differential equations in science and engineering. New York: Academic Press 1973

    Google Scholar 

  • Sullivan, S. J., Daukas, G., Zigmond, S. H.: Asymmetric distribution of the chemotactic receptor on polymorphonuclear leukocytes. J. Cell Biol. 99, 1461–1467 (1984)

    Google Scholar 

  • Sullivan, S. J., Zigmond, S. H.: Chemotactic peptide receptor modulation in polymorphonuclear leukocytes. J. Cell Biol. 85, 703–711 (1980)

    Google Scholar 

  • Tranquillo, R. T. Phenomenological and fundamental descriptions of leukocyte random motility and chemotaxis. Ph.D. Thesis, Department of Chemical Engineering, University of Pennsylvania 1986

  • Tranquillo, R. T., Lauffenburger, D. A.: Consequences of chemosensory phenomena for leukocyte chemotactic orientation. Cell Biophys. 8, 1–46 (1986)

    Google Scholar 

  • Tranquillo, R. T., Lauffenburger, D. A.: Analysis of leukocyte chemosensory movement. In: Mauri, C., Rizzo, S. V., Ricevuti, G. (eds.) The biological and clinical aspects of phagocyte function. Oxford: Pergamon 1987

    Google Scholar 

  • Wright, D. J.: The digital simulation of stochastic differential equations. IEEE Trans. Auto Control 19, 75–76 (1974)

    Google Scholar 

  • Zigmond, S. H.: Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977)

    Google Scholar 

  • Zigmond, S. H., Sullivan, S. J. Sensory adaptation of leukocytes to chemotactic peptides. J. Cell Biol. 82, 517–527 (1979)

    Google Scholar 

  • Zigmond, S. H., Klausner, R., Tranquillo, R. T., Lauffenburger, D. A.: Analysis of the requirements for time-averaging of the receptor occupancy for gradient detection by polymorphonuclear leukocytes. In: Membrane receptors and cellular regulation, pp. 347–356. New York: Liss 1985

    Google Scholar 

  • Zigmond, S. H., Levitsky, H. I., Kreel, B. J.: Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. J. Cell Biol. 89, 585–592 (1981)

    Google Scholar 

  • Zigmond, S. H., Slonczewski, J. L., Wilde, M. W., Carson, M.: Calcium and the regulation of cell locomotion. In: M. Eisenbach, Balaban, M. (eds.) Sensing and response in microorganisms, pp. 195–211. Amsterdam-New York: Elsevier 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tranquillo, R.T., Lauffenburger, D.A. Stochastic model of leukocyte chemosensory movement. J. Math. Biology 25, 229–262 (1987). https://doi.org/10.1007/BF00276435

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276435

Key words

Navigation