Skip to main content
Log in

Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Thioglucoside glucohydrolase (EC 3.2.3.1; myrosinase) hydrolyses glucosinolates and thereby liberates glucose and sulphur and nitrogen compounds. To examine the hypothesis that the myrosinase-glucosinolate system is influenced by environmental factors, the effect of sulphate on the expression of myrosinases was examined. On examining different plant organs at various stages, it was observed that sulphate induces a differential expression of myrosinase polypeptides in plants ofSinapis alba L. (white mustard). Specific myrosinase polypeptides, dependent on sulphate in the growth medium, were detected on immunoblots. Without sulphate a maximum of three polypeptides was detected in buds, two in cotyledons and one in stems and roots. In plants cultured on medium with sulphate up to four polypeptides could be observed in cotyledons, five polypeptides in buds, two in stems and one in roots. Expression of myrosinases was, in general, high in plants cultured on a medium supplemented with sulphate. In floweringS. alba plants, sulphate-starved plants showed a higher expression of myrosinase in cotyledons and stems compared to plants fed with sulphate. Sulphate-fed plants had a high expression in inflorescences and roots. The organ- and time-specific induction of the myrosinase expression is discussed in relation to sulphate metabolism and availability of sulphate under normal conditions of cultivation and in relation to protection of Brassicaceae species. This is the first evidence for a specific induction of individual myrosinase proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IEF:

isoelectricfocusing

MS-medium:

Murashige and Skoog medium

pI:

isoelectric point

References

  • Bell, C.I., Cram, W.J., Clarkson, D.T. (1990) Turnover of sulphate in leaf vacuoles limits retranslocation under sulphur stress. In. Sulphur nutrition and sulphur assimilation in higher plants, pp. 163–165, Rennenberg, H., Brunold, C., de Kok, L.J., Stulen, I., eds. SPB Academic Publishing, Hague

    Google Scholar 

  • Bones, A.M. (1990) Distribution of β-thioglucosidase activity in intact plants, cell and tissue cultures and regenerated plants ofBrassica napus L. J. Exp. Bot.41, 737–744

    CAS  Google Scholar 

  • Bones, A.M., Espevik, T. (1987) Monoclonal antibodies to myrosinase in plants. Proc. 7th Int. Rapeseed Congr., 6, pp. 1482–1489, Poznan, Poland

    Google Scholar 

  • Bones, A.M., Iversen, T.-H. (1985) Myrosin cells and myrosinase. Isr. J. Bot.34, 351–375

    CAS  Google Scholar 

  • Bones, A.M., Slupphaug, G. (1989) Purification, characterization and partial amino acid sequencing of β-thioglucosidase fromBrassica napus L. J. Plant Physiol.134, 722–729

    CAS  Google Scholar 

  • Bones, A.M., Thangstad, O.P. (1991) Preparative purification of myrosinase fromSinapis alba L. — Characterization of polyclonal antibodies against myrosinase. Proc. 8th Int. Rapeseed Congr., 3, pp. 899–904, McGregor, D.I., ed. Saskaaton, Canada

    Google Scholar 

  • Bones, A.M., Thangstad, O.P., Haugen, O.A., Espevik, T. (1991) Fate of myrosin cells: Characterization of monoclonal antibodies against myrosinase. J. Exp. Bot.42, 1541–1549

    CAS  Google Scholar 

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254

    Article  CAS  PubMed  Google Scholar 

  • Chadchawan, S., Bishop, J., Thangstad, O.P., Bones, A.M., Mitchell-Olds, T., Bradley, D. (1993)Arabidopsis cDNA sequence encoding myrosinase. Plant Physiol.103, 671–672

    Article  CAS  PubMed  Google Scholar 

  • Chew, F.S. (1988) Biological effects of glucosinolates. In: Biologically active natural products for potential use in agriculture, pp. 155–181, Cutler, H.G., ed. Am. Chem. Soc., Washington

    Google Scholar 

  • Evans, L.T. (1975) Sulphur in agriculture. In: Sulphur in australasian agriculture, pp. 3–9, McLachlan, K.D., ed. U.P. Sydney

    Google Scholar 

  • Fenwick, G.R., Heaney, R.K., Mullin, D.J. (1983) Glucosinolates and their breakdown products in food and food plants, Crit. Rev. Food Sci. Nutr.18, 123–201

    Article  CAS  PubMed  Google Scholar 

  • Grob, R., Matile, P. (1979) Vacuolar location of glucosinolates in horseradish root cells. Plant Sci. Lett.14, 327–335

    Article  CAS  Google Scholar 

  • Heukeshoven, J., Dernick, R. (1985) Simplified method for silver staining in polyacrylamide gels and the mechanism of silver staining. Electrophoresis6, 103–112

    Article  CAS  Google Scholar 

  • Höglund, A.-S., Lenman, M., Falk, A., Rask, L. (1991) Distribution of myrosinase in rapeseed tissues. Plant Physiol.95, 213–221

    Article  PubMed  Google Scholar 

  • Höglund, A.-S., Lenman, M., Rask, L. (1992) Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane. Plant Sci.85, 165–170

    Article  Google Scholar 

  • James, D., Rossiter, J.T. (1991) Development and characteristics of myrosinase inBrassica napus during early seedling growth. Physiol. Plant.82, 163–170

    Article  CAS  Google Scholar 

  • Koritsas, V.M., Lewis, J.A., Fenwick, G.R. (1989) Accumulation of indole glucosinolates inPsylliodes chrysocephala L.-infested, or-damaged tissues of oilseed rape (Brassica napus L.) Experientia45, 493–495

    Article  CAS  Google Scholar 

  • Lenman, M., Rödin, J., Josefsson, L.-R., Rask, L. (1990) Immunological characterization of rapeseed myrosinase. Eur. J. Biochem.194, 747–753

    Article  CAS  PubMed  Google Scholar 

  • MacGibbon, D.B., Allison, R.M. (1970) A method for the detection of plant glucosinolases (myrosinases). Phytochemistry9, 541–544

    Article  CAS  Google Scholar 

  • Machev, N.P., Schraudolf, H. (1978) Thiocyanate as predecessor of asparagine inSinapis alba L. Plant Physiol. (Bulgaria)4, 26–33

    CAS  Google Scholar 

  • Matile, P. (1980) “Die Senfölbombe”: Zur Kompartimentierung des Myrosinasesystems. Biochem. Physiol. Pflanz.175, 722–731

    CAS  Google Scholar 

  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant.15, 473–497

    Article  CAS  Google Scholar 

  • Raven, J.A. (1980) Nutrient transport in microalgae. Adv. Microbial. Physiol.21, 47–226

    Article  CAS  Google Scholar 

  • Schnug, E. (1990) Glucosinolates-fundamental, environmental and agricultural aspects. In: Sulphur nutrition and sulphur assimilation in higher plants, pp. 97–106, Rennenberg, H., Brunold, C., de Kok, L.J., Stulen, I., eds. SPB Academic Publishing, Hague

    Google Scholar 

  • Syers, J.K., Skinner, R.J., Curtin, D. (1987) Soil and fertiliser sulphur in U.K. agriculture. Proc. Fert. Soc.264, 1–43

    Google Scholar 

  • Thangstad, O.P., Iversen, T.H., Slupphaug, G., Bones, A.M. (1990) Immunocytochemical localization of myrosinase inBrassica napus L Planta180, 245–248

    Article  CAS  Google Scholar 

  • Thangstad, O.P., Evjen, K., Bones, A.M. (1991) Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma161, 85–93

    Article  CAS  Google Scholar 

  • Thangstad, O.P., Winge, P., Husebye, H., Bones, A.M. (1993) The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. Plant Mol. Biol.23, 511–524

    Article  CAS  PubMed  Google Scholar 

  • Wei, X., Roomans, G.M., Sevéus, L., Pihakaski, K. (1981) Localization of glucosinolates in roots ofSinapis alba using X-ray microanalysis. Scanning Electron. Microsc.2, 481–488

    Google Scholar 

  • Xue, J., Lenman, M., Falk, A., Rask, L. (1992) The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family: Plant Mol. Biol.18, 387–398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bones, A.M., Visvalingam, S. & Thangstad, O.P. Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases). Planta 193, 558–566 (1994). https://doi.org/10.1007/BF02411562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411562

Key words

Navigation