Skip to main content
Log in

Lithium intercalation in MoO3-nH2O

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Oxide-hydrates of molybdenum (OHM) are of interest as lithium insertion electrodes for rechargeable lithium batteries because they offer wide operating temperature, long shelf life and low cost. We have studied the electrochemical characteristics of Li/OHM batteries using two types of commercial materials. Results are as follows. (a) The discharge potential (Φ) ranges between 3.0 and 1.5 V and it is a function of the water content into the cathode. (b) The electro-insertion of Li occurs mainly in two steps in the compositional range 0<x(Li)<1.5. (c) The discharge/charge (Φ-x) curves are very well fitted using a theoretical relationship based on the mean field approximation of a lattice-gas model including an ion-ion interaction term. (d) Kinetics show that Li-ions are highly mobile in the OHM framework. Long-term cycling has been investigated and a detailed analysis of the residual fading capacity during cycling is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. C. Julien, L. El-Farh, M. Balkanski, O.M. Hussain and G.A. Nazri, Appl. Surf. Sci.65–66, 325 (1993).

    Google Scholar 

  2. K. Hinokuma, A. Kishimoto and T. Kudo, J. Electrochem. Soc.141, 876 (1994).

    CAS  Google Scholar 

  3. L. Kihlborg, Arkiv. Kemi21, 357 (1963).

    CAS  Google Scholar 

  4. S. Crouch-Baker and P.G. Dickens, Solid State Ionics32–33, 219 (1989).

    Google Scholar 

  5. F.W. Dampier, J. Electrochem. Soc.121, 656 (1974).

    CAS  Google Scholar 

  6. N. Margalit, J. Electrochem. Soc.121, 1460 (1974).

    CAS  Google Scholar 

  7. J.O. Besenhard and R. Schollhörn, J. Power Sources1, 267 (1976/77).

    Google Scholar 

  8. P.A. Christian, J.N. Carides, F.J. DiSalvo and J.V. Waszczak, J. Electrochem. Soc.127, 2315 (1980).

    CAS  Google Scholar 

  9. J.O. Besenhard, J. Heydecke, E. Wudy, H.P. Fritz and W. Foag, Solid State Ionics8, 61 (1983).

    Article  CAS  Google Scholar 

  10. N. Kumagal, N. Kumagai and K. Tanno, Electrochim. Acta32, 1521 (1987).

    Google Scholar 

  11. N. Kumagai, N. Kumagai and K. Tanno, J. Appl. Electrochem.18, 857 (1988).

    Article  CAS  Google Scholar 

  12. M. Sugawara, Y. Kitada and K. Matsuki, J. Power Sources26, 373 (1989).

    CAS  Google Scholar 

  13. C. Julien and G.A. Nazri, Solid State Ionics68, 111 (1994).

    CAS  Google Scholar 

  14. W. Weppner and R.A. Huggins, J. Electrochem. Soc.124, 1569 (1977).

    CAS  Google Scholar 

  15. J.R. Günter, J. Solid State Chem.5, 354 (1972).

    Article  Google Scholar 

  16. H.R. Oswald, J.R. Günter and E. Dubler, J. Solid State Chem.13, 330 (1975).

    Article  CAS  Google Scholar 

  17. S. Basu and W.L. Worrell, in Fast Ion Transport in Solids, edited by P. Vashishta, J.N. Mundy and G.K. Shenoy (North-Holland, Amsterdam, 1979), p. 149.

    Google Scholar 

  18. W.R. McKinnon and R.R. Hearing, in Modern Aspects of Electrochemistry, vol. 15, edited by R. White, J.O'M. Bockris and B.E. Conway (Plenum, New York, 1983), p. 235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yebka, B., Julien, C. Lithium intercalation in MoO3-nH2O. Ionics 2, 196–200 (1996). https://doi.org/10.1007/BF02376021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376021

Keywords

Navigation