Skip to main content
Log in

Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for future research

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Over the last few years research in the area of biological nitrogen fixation (BNF) associated with cereals and grasses has become divided into two areas. On the one hand there have been a large number of reports of responses of field-grown plants to inoculation with N2-fixing bacteria, principallyAzospirillum spp. On the other hand there have been several reports of significant contributions of associated BNF to the nutrition of several crops, including wetland rice, sugar cane and some forage grasses. However, where BNF contributions have definitely been established no certain information is available as to the diazotrophic organisms responsible. Furthermore, certain recent reports indicate that, at least in some cases, responses of plants to inoculation withAzospirillum spp. have been shown not to be due to BNF contributions.

In this paper we review some recent progress in this field, particularly at our institute in Rio de Janeiro, concerning specificity of selected Azospirillum strains in the infection of cereal roots and the promotion of responses in the host plants. The possible mechanisms of plant response are discussed including the possibility that plant growth substances or bacterial nitrate reductase are involved. The application of15N and N balance techniques to the quantification of plant associated BNF are considered and the possible strategies that may be adopted to further the understanding of true N2-fixing plant/diazotroph associations.

The recent discovery of many more plant-associated N2-fixing bacteria suggests that further research in this area may eventually lead to the development of such associations with applications for agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht S L, Okon Y and Burris R H 1977 Effects of light and temperature on association betweenZea mays andSpirillum lipoferum. Plant Physiol. 60, 528–531.

    CAS  Google Scholar 

  • Albrecht S L, Okon Y, Lonnquist J and Burris R H 1981 Nitrogen fixation by corn Azospirillum associations in a temperate climate. Crop Sci. 21, 310–306.

    Google Scholar 

  • App A A, Watanabe I, Alexander M, Ventura W, Daez C, Santiago T and De Datta S K 1980 Non-symbiotic nitrogen fixation associated with the rice plant in flooded soils. Soil Sci. 130, 283–289.

    CAS  Google Scholar 

  • App A A, Santiago T, Daez C, Menguito C, Ventura W, Tirol A, Po J, Watanabe I, De Datta S K and Roger P 1984 Estimation of the nitrogen balance for irrigated rice and the contribution of phototrophic nitrogen fixation. Field Crops Res 9, 17–27.

    Article  Google Scholar 

  • App A A, Watanabe I, Ventura T S, Bravo M and Jurey C D 1986 The effect of cultivated and wild rice varieties on the nitrogen balance of flooded soil. Soil Sci. 141, 448–452.

    Google Scholar 

  • Avivi Y and Feldman M 1982 The response of wheat to bacteria of the genus Azospirillum. Israel J. Bot. 31, 237–245.

    Google Scholar 

  • Balandreau J and Villemin G 1973 Fixation biologique de l'azote en savane de Lamto (basse Cote d'Ivoire): Resultats preliminaires. Rev. Ecol. Biol. Sol 10, 23–33.

    Google Scholar 

  • Balandreau J, Millier C R and Dommergues Y R 1974 Diurnal variations of nitrogenase activity in the field. Appl. Microbiol. 27, 622–665.

    Google Scholar 

  • Balandreau J, Millier C Weinhard P, Ducerf P and Dommergues Y R 1976 Etude des variations de la fixation d'azote dans une culture de mais. C.R. Acad. Sci. (Paris) 282 Serie D, 1071–1074.

    Google Scholar 

  • Baldani V L D and Dobereiner J 1980 Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol. Biochem. 12, 433–440.

    Article  Google Scholar 

  • Baldani J I, Pereira P A A, Rocha R E M da and Dobereiner J 1981 Especificidade na infeção de raizes porAzospirillum spp. em plantas com via fotosintêtica C3 e C4. Pesq. Agropec. Bras. 16, 325–330.

    Google Scholar 

  • Baldani V L D, Baldani J I and Dobereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 29, 924–929.

    Google Scholar 

  • Baldani J I, Baldani V L D, Seldin L and Dobereiner J 1986a Characterization ofHerbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36, 86–93.

    CAS  Google Scholar 

  • Baldani V L D, Alvarez M A de B, Baldani J I and Dobereiner J 1986 Establishment of inoculatedAzospirillum spp. in the rhizosphere and in roots of field-grown wheat and sorghum. Plant and Soil 90, 35–46.

    Article  Google Scholar 

  • Baldani V L D, Baldani J I and Dobereiner J 1987 Inoculation of field-grown wheat withAzospirillum spp. in Brazil. Biol. Fertil. Soils 4, 37–40.

    Google Scholar 

  • Barber L E, Tjepkema J D, Russell S A and Evans H J 1976 Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum. Appl. Environ. Microbiol. 32, 108–113.

    CAS  PubMed  Google Scholar 

  • Barraquio W L, Ladha J K and Watanabe I 1983 Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can. J. Microbiol. 29, 867–873.

    CAS  PubMed  Google Scholar 

  • Berkum P Van and Bohlool B B 1980 Evaluation of nitrogenfixation by bacteria in association with roots of tropical grasses. Microb. Rev. 44, 491–517.

    Google Scholar 

  • Berkum P Van, McClung C R and Sloger C 1982 Some pertinent remarks on N2 fixation associated with the roots of grasses.In Biological Nitrogen Fixation technology for Tropical Agriculture. Eds. P H Graham and S C Harris. pp 513–525. Centro Internacional de Agricultura Tropical. Cali, Columbia.

    Google Scholar 

  • Boddey R M 1987 Methods for quantification of nitrogen fixation associated with Gramineae. CRC Critical Rev. Plant Sci. 6, 209–266.

    CAS  Google Scholar 

  • Boddey R M and Ahmad N 1981 Seasonal variations in nitrogenase activity of various rice varieties measured with anin situ acetylene reduction technique in the field.In Associative N2 Fixation. Eds. P B Vose and A P Ruschel, Vol II, pp 219–229. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Boddey R M and Dobereiner J 1982 Associations of Azospirillum and other diazotrophs with tropical Gramineae. Trans. 12th Int. Congr. Soil Sci. New Delhi, India, Symp. Papers I, Non-symbiotic Nitrogen Fixation and Organic Matter in the Tropics pp 25–47.

  • Boddey R M and Victoria R L 1986 Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using15N labelled, organic matter and fertilizer. Plant and Soil 90, 265–292.

    Article  CAS  Google Scholar 

  • Boddey R M, Chalk P M, Victoria R L, Matsui E and Dobereiner J 1983 The use of the15N isotope dilution technique to estimate the contribution of associated biological nitrogen fixation to the nitrogen nutrition ofPaspalum notatum cv batatais. Can. J. Microbiol. 29, 1036–1045.

    Google Scholar 

  • Boddey R M, Baldani V L D, Baldani J I and Dobereiner J 1986 Effect of inoculation ofAzospirillum on the nitrogen assimilation of field-grown wheat. Plant and Soil 95, 109–121.

    Google Scholar 

  • Bouton J H and Zuberer D A 1979 Response ofPanicum maximum Jacq. to inoculation withAzospirillum brasilense. Plant and Soil 52, 585–590.

    Article  Google Scholar 

  • Bulow J F W Von and Dobereiner J 1975 Potential for nitrogen fixation in maize genotypes in Brazil. Proc. Nat. Acad. Sci. 72, 2389–2393.

    Google Scholar 

  • Cavalcante V A and Dobereiner J 1988 A new acid-tolerant nitrogen-fixing bacteria associated with sugarcane. Plant and Soil 108, 23–31.

    Google Scholar 

  • Cohen E, Okon Y, Kigel J, Nur I and Henis Y 1980 Increases in dry weight and total nitrogen inZea mays andSetaria italica associated with nitrogen-fixingAzospirillum spp. Plant Physiol. 66, 746–749.

    Google Scholar 

  • De Polli H, Matsui E, Dobereiner J and Salati E 1977 Confirmation of nitrogen fixation in two tropical grasses by15N2 incorpation. Soil Biol. Biochem. 9, 119–123.

    Google Scholar 

  • Dobereiner J 1961 Nitrogen fixing bacteria of the genus Beijerinckia Derx. in the rhizosphere of sugarcane. Plant and Soil 15, 211–217.

    Article  Google Scholar 

  • Dobereiner J and Alvahydo R 1959 Sôbre a influência da canade-açucar na ocorrência deBeijerinckia no solo. II. Influência das diversos partes do vegetal. Rev. Bras. Biol. 19, 401–412.

    Google Scholar 

  • Dobereiner J and Baldani V L D 1981 Prospects for inoculation of grasses withAzospirillum spp.In Associative N2 Fixation. Eds. P B Vose and A P Ruschel, Vol II pp 1–9, CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Dobereiner J and Day J M 1976 Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen fixing sites.In Proc. 1st Int. Symp. Nitrogen Fixation. Eds. W E Newton and C J Nyman, pp 518–538. Washington State Univ. Press, Pullman, Washington, USA.

    Google Scholar 

  • Dobereiner J and De Polli H 1980 Nitrogen fixing rhizocoenoses.In Nitrogen Fixation. Eds. W D P Stewart and Y R Gallon, pp 301–333. Acad. Press, London.

    Google Scholar 

  • Dobereiner J, Day J M and Dart P J 1972 Nitrogenase activity and oxygen sensitivity of thePaspalum notatum—Azotobacter paspali association. J. Gen. Microbiol. 71, 103–116.

    CAS  Google Scholar 

  • Eskew D L, Eaglesham A R J and App A A 1981 Heterotrophic15N2 fixation and distribution of newly fixed nitrogen in a rice-flooded soil system. Plant Physiol. 68, 48–52.

    CAS  Google Scholar 

  • Ferreira M C B, Fernandes M S and Dobereiner J 1987 Role ofAzospirillum brasilense nitrate reductase, in nitrate assimilation by wheat plants. Biol. Fertil. Soils 4, 47–53.

    CAS  Google Scholar 

  • Haahtela K, Helander I, Nurmiaho-Lassila E L and Sundman V 1983 Morphological and physiological characteristics and lipopolysaccharide composition of N2-fixing (C2H2-reducing) root-associatedPseudomonas sp. Can. J. Microbiol. 29, 874–880.

    CAS  PubMed  Google Scholar 

  • Hardy R W F, Holsten R D, Jackson E K and Burns R C 1968 The acetylene-ethylene assay for N2-fiation: Laboratory and field evaluations. Plant Physiol. 43, 1185–1207.

    CAS  Google Scholar 

  • Hegazi N A, Monib M, Amer H A and Shokr E-S 1983 Response of maize plants to inoculation with azospirilla and (or) straw amendment in Egypt. Can. J. Microbiol. 29, 888–894.

    Google Scholar 

  • Holl F B 1983 Plant genetics: Manipulation of the host. Can. J. Microbiol. 29, 945–953.

    Google Scholar 

  • Inbal E and Feldman M 1982 The response of a hormonal mutant of common wheat to bacteria of the genus Azospirillum. Israel J. Bot. 31, 257–263.

    Google Scholar 

  • Jain D K and Patriquin D G 1984 Root hair deformation, bacterial attachment, and plant growth in wheat-Azospirillum associations. Appl. Environ. Microbiol. 48, 1208–1213.

    PubMed  Google Scholar 

  • Jain D K and Patriquin D G 1985 Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can. J. Microbiol. 31, 206–210.

    Google Scholar 

  • Kapulnik Y, Okon Y, Kigel J, Nur I and Henis Y 1981a Effects of temperature, nitrogen-fertilization and plant-age on nitrogen-fixation bySetaria italica inoculated withAzospirillum brasilense (strain Cd). Plant Physiol. 68, 340–343.

    CAS  Google Scholar 

  • Kapulnik Y, Sarig S, Nur I, Okon, Kigel Y and Henis Y (1981b Yield increases in summer cereal crops of Israel in fields inoculated with Azospirillum. Exp. Agric. 17, 179–187.

    CAS  Google Scholar 

  • Kapulnik Y, Sarig S, Nur I, Okon Y and Henis Y 1982 The effect of Azospirillum inoculation on growth and yield of corn. Israel J. Bot. 31, 247–256.

    Google Scholar 

  • Kapulinik Y, Feldman M, Okon Y and Henis Y 1985a Contribution of nitrogen fixed by Azospirillum to the N nutrition of spring wheat in Israel. Soil Biol. Biochem. 17, 509–515.

    Google Scholar 

  • Kapulnik Y, Gafny R and Okon Y 1985b Effect ofAzospirillum spp. on root development and NO 3 uptake in wheat (Triticum aestivum cv. Miriam) in hydroponic systems. Can. J. Bot. 63, 627–631.

    CAS  Google Scholar 

  • Kapulnik Y, Okon Y and Henis Y 1985c Changes in root morphology of wheat caused byAzospirillum inoculation. Can. J. Microbiol. 31, 881–887.

    Google Scholar 

  • Kohl D H and Shearer G 1981 The use of soils lightly enriched in15N to screen for N2-fixing activity. Plant and Soil 60, 487–489.

    Article  CAS  Google Scholar 

  • Koyama T and App A A 1979 Nitrogen balance in flooded rice soils.In Nitrogen and Rice. pp 95–104. International Rice Research Institute. Laguna, Phillippines.

    Google Scholar 

  • Lima E, Boddey R M and Dobereiner J 1987 Quantification of biological nitrogen fixation associated with sugarcane using a15N aided nitrogen balance. Soil Biol. Biochem. 19, 165–170.

    Article  CAS  Google Scholar 

  • Magalhães F M M, Baldani J I, Souto S M, Kuykendall J R and Dobereiner J 1983 A new acid tolerantAzospirillum species. An. Acad. Bras. Ciênc. 55, 417–430.

    Google Scholar 

  • Malik K A and Zafar Y 1985 Quantification of root associated nitrogen fixation in Kallar grass as estimated by15N isotope dilution.In Proc. Int. Symp. Nitrogen and the Environment. Eds. K A Maliket al., pp 161–171. Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan.

    Google Scholar 

  • McClung C R, Patriquin D G and Davis R E 1983aCampylobacter nitrofigilis sp. nov., a nitrogen fixing bacterium associated with roots ofSpartina alterniflora Loise. Int. J. Syst. Bacteriol. 33, 605–612.

    Google Scholar 

  • McClung C R, Berkum V Van, Davis R E and Sloger C 1983 Enumeration and localization of N2-fixing bacteria associated with roots ofSpartina alterniflora Loisel. Appl. Environ. Microbiol. 45, 1914–1920.

    PubMed  Google Scholar 

  • Miranda C H B and Boddey R M 1987 Estimation of biological nitrogen fixation associated with 11 ecotypes ofPanicum maximum grown in15N labelled soil. Agron. J. 79, 558–563.

    Google Scholar 

  • Morris D R, Zuberer D A and Weaver R W 1985 Nitrogen fixation by intact grass-soil cores using15N and acetylene reduction. Soil Biol. Biochem. 17, 87–91.

    Article  CAS  Google Scholar 

  • O'Hara G H, Davey M R and Lucas J A 1981 Effect of inoculation ofZea mays withAzospirillum brasilense under temperate conditions. Can. J. Microbiol. 27, 871–877.

    PubMed  Google Scholar 

  • Okon Y 1982 Azospirillum: Physiological properties, mode of association with roots and its application for the benefit of cereal and forage grass crops. Israel J. Bot. 31, 214–220.

    Google Scholar 

  • Okon Y 1984 Response of cereal and forage grasses to inoculation with N2-fixing bacteria.In Advances in Nitrogen Fixation Research. Eds. C, Veeger and W E Newton, pp 303–309. Martinus/Junk Publishers, Wageningen, Holland.

    Google Scholar 

  • Okon Y and Kapulnik Y 1986 Development and function of Azospirillum-inoculated roots. Plant and Soil 90, 3–16.

    Article  CAS  Google Scholar 

  • Okon Y, Albrecht S L and Burris R H 1977 Methods for growingSpirillum lipoferum and for counting it in pure culture and in association with plants. Appl. Environ. Microbiol. 33, 85–88.

    PubMed  Google Scholar 

  • Okon Y, Heytler P G and Hardy R W F 1983 N2 fixation byAzospirillum brasilense and its incorporation into hostSetaria italica. Appl. Environ. Microbiol. 46, 694–697.

    CAS  PubMed  Google Scholar 

  • Pacovsky R S, Paul E A and Bethlenfalvay G J 1985 Nutrition of sorghum plants fertilized with nitrogen or inoculated withAzospirillum brasilense. Plant and Soil 85, 145–148.

    Article  CAS  Google Scholar 

  • Patriquin D G and Dobereiner J 1978 Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol. 24, 734–742.

    CAS  PubMed  Google Scholar 

  • Patriquin D G, Dobereiner J and Jain D K 1983 Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29, 900–915.

    Google Scholar 

  • Plazinski J and Rolfe B G 1985 Influence of Azospirillum strains on the nodulation of clovers by Rhizobium strains. Appl. Environ. Microbiol. 49, 984–989.

    PubMed  Google Scholar 

  • Rai S N and Gaur A C 1982 Nitrogen fixation byAzospirillum spp. and effect ofAzospirillum lipoferum on the yield and N uptake of wheat crop. Plant and Soil 69, 233–238.

    Article  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S and De Ley J 1987Azospirillum halopraeferens sp. nov., a nitrogen-fixing organisms associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth.) Int. J. Syst. Bacteriol. 37, 43–51.

    Google Scholar 

  • Reynders L and Vlassak K 1982 Use ofAzospirillum brasilense as a biofertilizer in intensive wheat cropping. Plant and Soil 66, 217–233.

    Article  Google Scholar 

  • Ruschel A P, Henis Y and Salati E 1975 Nitrogen-15 tracing of N-fixation with soil-grown sugarcane seedlings. Soil Biol. Biochem. 7, 181–182.

    Article  CAS  Google Scholar 

  • Sarig S, Kapulnik Y, Nur I and Okon Y. 1984 Response of non-irrigatedSorghum bicolor toAzospirillum inoculation. Expl. Agric. 20, 59–66.

    Google Scholar 

  • Schank S C, Smith R L, Weiser G C, Zuberer D A, Bouton J H, Quesenberry K H, Tyler M E, Milam J R and Littell R C Fluorescent antibody technique to identifyAzospirillum brasilense associated with roots of grasses. Soil Biol. Bochem. 11, 287–295.

  • Schank S C, Weier K L and Macrae I C 1981 Plant yield and nitrogen content of digit grass in response to Azospirillum inoculation. Appl. Environ. Microbiol. 41, 342–345.

    CAS  PubMed  Google Scholar 

  • Seldin L, Elsas J D Van and Penido E G C 1984Bacillus azotofixans sp. nov. a nitrogen-fixing specie from Brazilian soils and grass roots. Int. J. Syst. Bacteriol. 34, 451–456.

    CAS  Google Scholar 

  • Smith R L, Bouton J H, Schank S C, Quesenberry K H, Tyler M E, Gaskins M H and Littell C 1976 Nitrogen fixation in grasses inoculated withSpirillum lipoferum. Science, 193, 1003–1005.

    CAS  Google Scholar 

  • Smith R L, Schank S C, Bouton J H and Quesenberry K H 1978 Yield increases of tropical grasses after inoculation withSpirillum lipoferum. In Environmental Role of Nitrogenfixing Blue-green Algae and Asymbiotic Bacteria. Ed. U Granhall, Bull. Ecol. (Stockholm).

  • Tarrand J J, Kreig N R and Dobereiner J 1978 A taxonomic study of theSpirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two speciesAzospirillum lipoferum (Beijerinck) comb. nov. andAzospirillum brasilense sp. nov. Can J. Microbiol. 24, 967–980.

    CAS  PubMed  Google Scholar 

  • Tien T M, Gaskins M H and Hubbell D H 1979 Plant growth substances produced byAzospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37, 1016–1024.

    CAS  PubMed  Google Scholar 

  • Tjepkema J and Berkum P Van 1977 Acetylene reduction by soil cores of maize and sorghum in Brazil. Appl. Environ. Microbiol. 33, 626–629.

    CAS  PubMed  Google Scholar 

  • Umali-Garcia M, Hubbel D H, Gaskins M H and Dazzo F B 1980 Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39, 219–226.

    PubMed  Google Scholar 

  • Ventura T S, Bravo M, Daez C, Ventura V, Watanabe I and App A A 1986 Effects of N-fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice. Plant and Soil 93, 405–411.

    Google Scholar 

  • Walcott J J, Chauviroj M, Chinehest A, Choticheuy P, Ferraris R and Norman B W 1977 Long-term productivity of intensive rice cropping systems on the central plain of Thailand. Expl. Agric. 13, 305–316.

    Google Scholar 

  • Wani S P, Upadhyaya M N and Dart P J 1984 An intact plant assay for estimating nitrogenase activity (C2H2—reduction) of sorghum and millet plants grown in pots. Plant and Soil 82, 15–30.

    Article  CAS  Google Scholar 

  • Wani S P, Chandrapalaiah S and Dart P J 1985 Response of pearl millet cultivars to inoculation with nitrogen-fixing bacteria. Expl. Agric. 21, 175–182.

    Google Scholar 

  • Watanabe I, Lee K-K and Guzman M de 1978 Seasonal changes of N2 fixing rate in rice field assayed byin sity acetylene reduction technique. II. Estimate of nitrogen fixation associated with rice plants. Soil Sci. Plant Nutrit. 24, 465–471.

    CAS  Google Scholar 

  • Watanabe I, Barraquio W L, Guzman M de and Cabrera D A 1979 Nitrogen fixation (acetylene reduction) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice. Appl. Environ. Microbiol. 37, 813–819.

    CAS  PubMed  Google Scholar 

  • Yahalom E, Kapulnik Y and Okon Y 1984 Response ofSetaria italica to inoculation withAzospirillum brasilense as compared toAzotobacter chroococcum. Plant and Soil 82, 77–85.

    Article  Google Scholar 

  • Yoshida T and Ancajas R R 1973 Nitrogen fixing activity in upland and flooded rice fields. Soil Sci. Soc. Am. Proc. 37, 42–46.

    CAS  Google Scholar 

  • Zambre M A, Konde B K and Sonar K R 1984 Effect ofAzotobacter chroococum andAzospirillum brasilense inoculation under graded levels of nitrogen, on growth and yield of wheat. Plant and Soil 79, 61–68.

    Article  Google Scholar 

  • Zuberer D A and Alexander D B 1986 Effects of oxygen partial pressure and combined nitrogen on N2 fixation (C2H2) associated withZea mays and other graminaceous species. Plant and Soil 90, 47–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boddey, R.M., Dobereiner, J. Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for future research. Plant Soil 108, 53–65 (1988). https://doi.org/10.1007/BF02370099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02370099

Key words

Navigation