Skip to main content
Log in

Quantitative characterization of cell invasionIn vitro: Formulation and validation of a mathematical model of the collagen gel invasion assay

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Anin vitro assay proposed to systematically characterize and compare cell invasion under different conditions is the collagen gel invasion assay where cells, initially seeded onto the surface of a type I collagen gel, penetrate the surface and migrate within the gel over time. Using simplifying assumptions about cell transport across the gel surface and migration within the gel, we formulate and solve a mathematical model of this assay which predicts the resulting cell distribution based on three phenomenological parameters characterizing the ability of cells to penetrate the gel surface interface, migrate randomly within the gel, and return to the gel surface. An index of cell invasiveness is defined based on these parameters that reflects the overall ability of cells to transport across the gel surface interface, that is, invade the gel. Cell concentration profiles predicted by the model correspond well to measured profiles for murine melanoma cells invading gels supplemented with extracellular matrix proteins fibronectin and type IV collagen as well as unsupplemented gels, allowing these parameters to be estimated by a nonlinear regression fit of the model solution to the measured profiles. Our analysis suggests that type IV collagen and fibronectin primarily modulate cell transport across the gel surface interface rather than migration within the gel. Further, we validate the key model assumptions and obtain independent, direct estimates of model parameters by time-lapse video microscopy and digital image analysis of cell penetration of the gel surface and migration within the gel during the assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M.; Stegun, I.A., eds. Handbook of mathematical functions. Washington, D.C.: Department of Commerce; 1972.

    Google Scholar 

  2. Bissell, M.J.; Aggeler, J. Dynamic reciprocity: How do extracellular matrix and hormones direct gene expression? Prog. Clin. Biol. Res. 249:251–262; 1987.

    CAS  PubMed  Google Scholar 

  3. Brown, A.F. Neutrophil granulocytes: Adhesion and locomotion on collagen substrata and in collagen matrices. J. Cell Sci. 58:455–467; 1982.

    CAS  PubMed  Google Scholar 

  4. Crank, J. The mathematics of diffusion. Oxford: Clarendon Press; 1975.

    Google Scholar 

  5. Dickinson, R.B.; Tranquillo, R.T. Optimal estimation of cell migration indices from the statistical analysis of cell tracking data. AIChE J. 39(12):1995–2010; 1993.

    Article  Google Scholar 

  6. Dunn, G.A. Characterizing a kinesis response: Time averaged measures of cell speed and directional persistence. Agents Act. Suppl. 12:14–33; 1983.

    CAS  Google Scholar 

  7. Erkell, L.J.; Schirrmacher, V. Quantitative in vitro assay for tumor cell invasion through extracellular matrix or into protein gels. Cancer Res. 48(23):6933–6937; 1988.

    CAS  PubMed  Google Scholar 

  8. Faassen, A.E.; Schrager, J.A.; Klein, D.J.; Oegema, T.R.; Couchman, J.R.; McCarthy, J.B. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J. Cell Biol. 116(2):521–531; 1992.

    Article  CAS  PubMed  Google Scholar 

  9. Furukawa, M.; Kono, T.; Tanii, T.; Ishii, M.; Hamada, T.; Shibata, T. Proliferative potential of murine melanoma cells cultured in or on collagen gel. J. Dermatol. 17:297–302; 1990.

    CAS  PubMed  Google Scholar 

  10. Goldfarb, R.H.; Liotta, L.A. Proteolytic enzymes in cancer invasion and metastasis. Semin. Thromb. Hemost. 12(4):294–307; 1986.

    CAS  PubMed  Google Scholar 

  11. Hendrix, M.J.; Seftor, E.A.; Seftor, R.E.; Misiorowski, R.L.; Saba, P.Z.; Sundareshan, P.; Welch, D.R. Comparison of tumor cell invasion assays: human amnion versus reconstituted basement membrane barriers. Invas. Metast. 9(5):278–297; 1989.

    CAS  Google Scholar 

  12. Herbst, T.; McCarthy, J.B.; Tsilibary, E.C.; Furcht, L.T. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J. Cell Biol. 106:1365–1373; 1988.

    Article  CAS  PubMed  Google Scholar 

  13. Islam, L.N.; McKay, I.C.; Wilkinson, P.C. The use of collagen or fibrin gels for the assay of human neutrophil chemotaxis. J. Immunol. Methods 85(1):137–151; 1985.

    Article  CAS  PubMed  Google Scholar 

  14. Kleinman, H.K.; McGarvey, M.L.; Liotta, L.A.; Geron Robey, P.; Trygvasson, K.; Martin, G.R. Isolation and characterization type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochem. 21:6188–6193; 1982.

    CAS  Google Scholar 

  15. Lackie, J.M.; Chaabane, N.; Crocket, K.V. A critique of the methods used to assess leucocyte behaviour. Biomed. Pharmacother. 41(6):265–278; 1987.

    CAS  PubMed  Google Scholar 

  16. Lawless, J.F. Statistical models and methods for lifetime data. New York: Wiley; 1982.

    Google Scholar 

  17. Liotta, L.; Schiffmann, E. Tumor autocrine motility factors. Important Adv. Oncol. 17–30; 1988.

  18. Liotta, L.; Rao, C.N.; Barsky, S.H. Tumor invasion and the extracellular matrix. Lab Invest. 49(6):636–649; 1983.

    CAS  PubMed  Google Scholar 

  19. McCarthy, J.B.; Chelberg, M.K.; Mickelson, D.J.; Furcht, L.T. Localization and chemical synthesis of fibronectin peptides with melanoma adhesion and heparin binding activities. Biochemistry 27(4):1380–1388; 1988.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy, J.B.; Sas, D.F.; Furcht, L.T. Mechanisms of parenchymal cell migration into wounds. In: Clark, R.A.F., Henson, P.M. eds. The molecular and cellular biology of wound repair. New York: Plenum Press; 1988. pp. 281–308.

    Google Scholar 

  21. Montesano, R.; Pepper, M.S.; Vassalli, J.D.; Orci, L. Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell Physiol. 132(3):509–516; 1987.

    Article  CAS  PubMed  Google Scholar 

  22. Mooradian, D.L.; McCarthy, J.B.; Komanduri, K.V.; Furcht, L.T. Effects of transforming growth factor-beta 1 on human pulmonary adenocarcinoma cell adhesion, motility, and invasion in vitro. J. Natl. Cancer Inst. 84(7):523–527; 1992.

    CAS  PubMed  Google Scholar 

  23. Othmer, H.G.; Dunbar, S.R.; Alt, W. Models of dispersal in biological systems. J. Math. Biol. 26(3):263–298; 1988.

    Article  CAS  PubMed  Google Scholar 

  24. Runyan, R.B.; Markwald, R.R. Invasion of mesenchyme into three-dimensional collagen gels: A regional and temporal analysis of interaction in embryonic heart tissue. Dev. Biol. 95(1):108–114; 1983.

    Article  CAS  PubMed  Google Scholar 

  25. Russo, R.G.; Thorgeirsson, U.; Liotta, L.A. In vitro quantitative assay of invasion using human amnion. In: Liotta, L.A., Hart, I.R., eds. Tumor invasion and metastasis. Boston: Nijhoff; 1982. pp. 175–187.

    Google Scholar 

  26. Schor, S.L.; Allen, T.D.; Harrison, C.J. Cell migration through three-dimensional gels of native collagen fibres: Collagenolytic activity is not required for the migration of two permanent cell lines. J. Cell Sci. 41:159–175; 1980.

    CAS  PubMed  Google Scholar 

  27. Schor, S.L.; Allen, T.D.; Winn, B. Lymphocyte migration into three-dimensional collagen matrices: A quantitative study. J. Cell Biol. 96(4):1089–1096; 1983.

    Article  CAS  PubMed  Google Scholar 

  28. Schor, S.L.; Schor, A.M.; Winn, B.; Rushton, G. The use of three-dimensional collagen gels for the study of tumour cell invasion in vitro: Experimental parameters influencing cell migration into the gel matrix. Int. J. Cancer. 29(1):57–62; 1982.

    CAS  PubMed  Google Scholar 

  29. Seber, G.A.F.; Wild, C.J. Nonlinear regression. New York: John Wiley & Sons; 1989.

    Google Scholar 

  30. Smith, C.W.; Anderson, D.C. PMN adhesion and extravasation as a paradigm for tumor cell dissemination. Cancer Metast. Rev. 10(1):61–78; 1991.

    Article  CAS  Google Scholar 

  31. Trygvasson, K.; Hoyhtya, M.; Salo, T. Proteolytic degradation of extracellular matrix in tumor invasion. Biochim. Biophys. Acta. 907(3):191–217; 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, R.B., McCarthy, J.B. & Tranquillo, R.T. Quantitative characterization of cell invasionIn vitro: Formulation and validation of a mathematical model of the collagen gel invasion assay. Ann Biomed Eng 21, 679–697 (1993). https://doi.org/10.1007/BF02368647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368647

Keywords

Navigation