Skip to main content
Log in

Hepatic conjugation/deconjugation cycling pathways. Computer simulations examining the effect of michaelis-menten parameters, enzyme distribution patterns, and a diffusional barrier on metabolite disposition

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Conjugation/deconjugation cycling plays an important role in the physiologic regulation of the concentration of endogenous compounds that form conjugated metabolites. Less is known concerning the deconjugation of xenobiotics. The model compound p-nitrophenol (pNP) is conjugated to sulfate and glucuronide metabolites which can also undergo hydrolysis, via separate enzyme systems, to regenerate pNP. In the present investigation, computer simulations were performed using literature values for theK M andV max for each of the four enzyme systems involved in net pNP conjugation. The apparent sulfation rate, apparent glucuronidation rate, and the extraction ratio (E) of pNP were each examined (i) as a function of pNP concentration, (ii) following alterations in theK M andV max values for the deconjugation enzymes, (iii) after modulating the enzyme distribution patterns along the liver flow path for both the conjugating and deconjugating enzymes, and (iv) in the presence of drug metabolite diffusional barriers for membrane transport. Results of these simulations demonstrated that changes in theK M orV max for deglucuronidation produced changes not only in net glucuronidation but also in net sulfation. Overall extraction (E) of the parent compound was only affected when glucuronidation was an important pathway, i.e., at higher pNP concentrations. Similar results were observed with changes in desulfation, with desulfation having the greatest effects at low pNP concentrations where sulfation represents the predominant metabolic pathway. Changes in the enzyme distribution patterns for the deconjugation pathways showed that the greatest influence on net conjugation rates occurred when hydrolase enzyme activity was distributed downstream from the respective forward reaction. In the presence of a diffusional barrier for metabolite transport (i.e., when the diffusional clearance was one tenth of blood flow), net metabolism of parent was diminished withE decreasing from 0.74, in the absence of a barrier, to 0.23, since the generated metabolite remained, to a great extent, within hepatocytes and underwent a more pronounced hydrolysis. In the presence of diffusional barriers for uptake of the conjugated metabolites, the lowest drug extraction and metabolite formation rates were observed when the distribution of the conjugation and deconjugation pathways across the liver were the same. Therefore, the effects of deconjugation on hepatic drug removal and metabolite formation are highly dependent on the enzymatic parameters of both the forward and reverse reactions, the parent drug concentration, the enzyme distribution patterns, and the presence of diffusional barriers for metabolite membrane transport. Since a change in the deconjugation of one metabolite can influence the net formation of not only itself but also other metabolites, and overall drug extraction, evaluation of conjugation/deconjugation cycling represents an important consideration in pharmacokinetic studies involving physiological-, pathological-, or pharmacological-induced alterations in conjugate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Kauffman. Regulation of drug conjugate production by futile cycling in intact cells. In F. C. Kauffman (ed.)Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, New York, 1994, pp. 243–255.

    Chapter  Google Scholar 

  2. A. B. Roy. Sulfotransferases. In G. J. Mulder (ed.),Sulfation of Drugs and Related Compounds, CRC Press, Boca Raton, 1981, pp. 83–130.

    Google Scholar 

  3. A. B. Roy. Sulfatase, lysosomes, and disease.Aust. J. Exp. Biol. Med. Sci. 54: 111–135 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. G. J. Dutton.Glucuronidation of Drugs and Other Compounds, CRC Press, Boca Raton, 1980, pp. 83–96.

    Google Scholar 

  5. A. A. Farooqui and P. Mandel. The clinical aspects of arylsulfatases.Clin. Chim. Acta 74:93–100 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. R. Shankaran, M. Ameen, W. L. Daniel, R. G. Davidson, and P. L. Chang. Characterization of arylsulphatase C isozymes from human liver and placenta.Biochim. Biophys. Acta 1078:251–257 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. K.-J. Ho, S.-C. Hsu, J.-S. Chen, and L.-H. C. Ho. Human biliary β-glucuronidase: Correlation of its activity with deconjugation of bilirubin in the bile.Eur. J. Clin. Invest. 16:361–367 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. S. A. Belinsky, F. C. Kauffman, P. M. Sokolove, T. Tsukuda, and R. G. Thurman. Calcium-mediated inhibition of glucuronide production by epinephrine in the perfused rat liver.J. Biol. Chem. 259:7705–7711 (1984).

    CAS  PubMed  Google Scholar 

  9. F. M. Brunelle and R. K. Verbeeck. Glucuronidation of diflunisol by rat liver microsomes. Effect of microsomal β-glucuronidase activity.Biochem. Pharmacol. 46:1953–1958 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. I. M. Anundi, F. C. Kauffman, M. El-Mouelhi, and R. G. Thurman. Hydrolysis of organic sulfates in periportal and pericentral regions of the liver lobule: studies with 4-methylumbelliferyl sulfate in the perfused rat liver.Mol. Pharmacol. 29:599–605 (1986).

    CAS  PubMed  Google Scholar 

  11. I. M. Anundi, F. C. Kauffman, M. El-Mouelhi, and R. G. Thurman. Hydrolysis of 4-methylumbelliferyl sulfate in periportal and pericentral areas of the liver lobule.Arch. Toxicol. 60:69–72 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. S. Ratna, M. Chiba, L. Bandyopadhyay, and K. S. Pang. Futile cycling between 4-methylumbelliferone and its conjugates in perfused rat liver.Hepatology 17:838–853 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. S. Miyauchi, Y. Sugiyami, T. Iga, and M. Hanano. The conjugative metabolism of 4-methylumbelliferone and deconjugation to the parent drug examined by the isolated perfused liver and in vitro liver homogenates of rats.Chem. Pharm. Bull. 37:475–480 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. M. Whittaker, P. M. Sokolove, R. G. Thurman, and F. C. Kauffman. Stimulation of 3-benzo[α]pyrenyl glucuronide hydrolysis by calcium activation of microsomal β-glucuronidase.Cancer Lett. 26a:145–152 (1986).

    Google Scholar 

  15. P. M. Sokolove, M. A. Wilcox, R. G. Thurman, and F. C. Kauffman. Stimulation of hepatic microsomal β-glucuronidase by calcium.Biochem. Biophys. Res. Commun. 121:987–993 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. I. Schöllhammer, D. S. Poll, and M. H. Bickel. Liver microsomal β-glucuronidase and UDP-glucuronyltransferase,Enzyme 20:269–276 (1975).

    PubMed  Google Scholar 

  17. I. A. M. DeLannoy and K. S. Pang. Commentary: Presence of a diffusional barrier on metabolite kinetics: Enalaprilat as a generated versus preformed metabolite.Drug Metab. Dispos. 14:513–520 (1986).

    CAS  Google Scholar 

  18. S. Miyauchi, Y. Sugiyami, T. Iga, and M. Hanano. Membrane-limited hepatic transport of the conjugative metabolites of 4-methylumbelliferone in rats.J. Pharm. Sci. 77:688–692 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. C. A. Goresky, K. S. Pang, A. J. Schwab, F. Barker III, W. F. Cherry, and G. G. Bach. Uptake of a protein bound polar compound, acetaminophen sulfate, by perfused rat liver.Hepatology 16:173–190 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. D. W. Sundheimer and K. Brendel. Metabolism of harmol and transport of harmol conjugates in isolated rat hepatocytes.Drug Metab. Dispos. 11:433–440 (1983).

    CAS  PubMed  Google Scholar 

  21. M. Vore. Regulation of drug conjugate processing by hepatocellular transport systems. In F. C. Kauffman (ed.),Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, New York, 1994, pp. 311–338.

    Chapter  Google Scholar 

  22. I. A. M. DeLannoy and K. S. Pang. Effect of diffusional barriers on drug and metabolite kinetics.Drug Metab. Dispos. 15:51–58 (1987).

    CAS  Google Scholar 

  23. H. Sato, Y. Sugiyama, S. Miyauchi, Y. Sawada, T. Iga, and M. Hanano. A simulation study on the effect of a uniform diffusional barrier across hepatocytes on drug metabolism by evenly or unevenly distributed uni-enzyme in the liver.J. Pharm. Sci. 75:3–8 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. S. Miyauchi, Y. Sugiyama, H. Sato, Y. Sawada, T. Iga, and M. Hanano. Effect of a diffusional barrier to a metabolite across hepatocytes on its kinetics in “enzyme-distributed” models: A computer-aided simulation study.J. Pharmacokin. Biopharm. 15:399–421 (1987).

    Article  CAS  Google Scholar 

  25. F. C. Kauffman, M. Whittaker, I. Anundi, and R. G. Thurman. Futile cycling of a sulfate conjugate by isolated hepatocytes.Mol. Pharmacol. 39: 414–420 (1991).

    CAS  PubMed  Google Scholar 

  26. A. Lombardo, G. Goi, E. Pistolesi, E. Rocca, S. Agosti, A. Fabi, A. Giuliani, A. B. Burlina, and G. Tettamanti. Behaviour of several enzymes of lysosomal orgin in human plasma during pregnancy,Clin. Chim. Acta 143: 253–264 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. F. Belfiore, L. L. Vecchio, and E. Napoli. Serum beta-glucuronidase activity in diabetic patients as related to vascular complications and degree of glucose metabolic disorder.Am. J. Med. Sci. 264:457–466 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. L. Kelly and S. R. Hall. Cathepsin D and aryl sulfatase activities in diabetic and insulin treated diabetic rat plasma, liver, kidney, and urine.Med. Sci. Res. 15:789–790 (1987).

    CAS  Google Scholar 

  29. M. E. Morris and K. S. Pang. Competition between two enzymes for substrate removal in liver: Modulating effects due to substrate recruitment of hepatocyte activity.J. Pharmacokin. Biopharm. 15:473–496 (1987).

    Article  CAS  Google Scholar 

  30. M. E. Morris, V. Yuen, and K. S. Pang. Competing pathways in drug metabolism. II. An identical, anterior enzymatic distribution for 2- and 5-sulfoconjugation and a posterior localization for 5-glucuronidation of gentisamide in the rat liver.J. Pharmacokin. Biopharm. 16:633–656 (1988).

    Article  CAS  Google Scholar 

  31. R. B. Hornbeck. The numerical solution of ordinary differential equations. InNumerical Methods, Quantum Publishers, New York, 1975, pp. 185–226.

    Google Scholar 

  32. P. M. Belanger, M. Lalande, G. Labrecque, and F. M. Dore. Diurnal variations in the transferases and hydrolases involved in glucuronide and sulfate conjugation of rat liver.Drug Metab. Dispos. 13:386–389 (1985).

    CAS  PubMed  Google Scholar 

  33. P. I. Eacho, D. Sweeny, and M. Weiner. Conjugation ofp-nitroanisole andp-nitrophenol in hepatocytes from streptozotocin diabetic rats.J. Pharmacol. Exp. Ther. 218:34–40 (1981).

    CAS  PubMed  Google Scholar 

  34. L. A. Reinke, S. A. Belinsky, R. K. Evans, F. C. Kauffman, and R. G. Thurman. Conjugation ofp-nitrophenol in the perfused rat liver: The effect of substrate concentration and carbohydrate reserves.J. Pharmacol. Exp. Ther. 217:863–870 (1981).

    CAS  PubMed  Google Scholar 

  35. M. El Mouelhi and F. C. Kauffman. Sublobular distribution of transferases and hydrolases associated with glucuronide, sulfate, and glutathione conjugation in human liver.Hepatology 6:450–456 (1986).

    Article  PubMed  Google Scholar 

  36. K. S. Pang and M. Chiba. Pharmacokinetic modeling of drug conjugates. In F. C. Kauffman (ed.),Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, New York, 1994, pp. 257–309.

    Chapter  Google Scholar 

  37. A. R. Pösö, K. E. Penttilä, and K. O. Lindros. Heterogeneous zonal distribution of lysosomal enzymes in rat liver.Enzyme 45:174–179 (1991).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansel, S.B., Morris, M.E. Hepatic conjugation/deconjugation cycling pathways. Computer simulations examining the effect of michaelis-menten parameters, enzyme distribution patterns, and a diffusional barrier on metabolite disposition. Journal of Pharmacokinetics and Biopharmaceutics 24, 219–243 (1996). https://doi.org/10.1007/BF02353490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353490

Key Words

Navigation