Skip to main content
Log in

Dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle,Xylosandrus mutilatus (Blandford) (Coleoptera: Scolytidae) in relation to its life history

  • Published:
Ecological Research

Abstract

The dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle,Xylosandrus mutilatus, were studied in relation to its life history using both isolation experiments and scanning electron microscopy (SEM). In the galleries,Ambrosiella sp. was predominant during the larval stages but its relative dominance gradually decreased during the development of the larvae. In contrast, yeasts (mainlyCandida sp.) andPaecilomyces sp. dominated continuously in the galleries after eclosion.Ambrosiella sp. was consistently stored in the mycangia in all adult stages, except in the teneral and overwintering adults when the other fungi were dominant. No fungal spores occurred in the mycangia of the adult beetles reared under aseptic conditions from the pupal stage, while onlyAmbrosiella sp. was stored in those reared from the teneral-adult stage. These results suggest that: (i) Xmutilatus is associated with at least three fungal species, among whichAmbrosiella sp. is the most essential food resource for development of the broods; (ii) immediately after eclosion, new female adults may take at least four associated fungal species, with no or incomplete selection, into their mycangia from the walls of the cradles; and (iii) conditions may well be produced in the mycangia of both matured and dispersing beetles whereby only the spores ofAmbrosiella sp. can proliferate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson L. P. &Norris D. M. (1966) Symbiontic interrelationships between microbes and ambrosia beetles. I. The organs of microbial transport and perpetuation ofXyloterinus politus.Ann. Entomol. Soc. Am. 59: 877–80.

    Google Scholar 

  • Baker J. M. (1963) Ambrosia beetles and their fungi, with particular reference toPlatypus cylindrus Fab.Symp. Soc. Genet. Microbiol. 13: 232–65.

    Google Scholar 

  • Baker J. M. &Norris D. M. (1968) A complex of fungi mutualistically involved in the nutrition of the ambrosia beetleXyleborus ferrugineus.J. Invertebr. Pathol. 11: 246–50.

    Google Scholar 

  • Barras S. J. &Perry T. (1972) Fungal symbionts in the prothoracic mycangium ofDendroctonus frontalis (Coleoptera: Scolytidae).Z. Angew. Entomol. 71: 95–104.

    Google Scholar 

  • Batra L. R. (1963) Ecology of ambrosia fungi and their dissemination by beetles.Trans. Kansas Acad. Sci. 66: 213–36.

    Google Scholar 

  • Batra L. R. (1966) Ambrosia fungi: Extent of specificity to ambrosia beetles.Science 153: 193–5.

    Google Scholar 

  • Batra L. R. (1967) Ambrosia fungi: A taxonomic revision, and nutritional studies of some species.Mycologia 59: 976–1017.

    Google Scholar 

  • Beaver R. A. (1989) Insect-Fungus relationships in the bark and ambrosia beetles. In:Insect-Fungus Interactions (eds N. Wilding, N. M. Collins, P. M. Hammond & J. F. Webber) pp. 121–43. Academic Press, London.

    Google Scholar 

  • Berrymann A. A. (1989) Adaptive pathways in scolytid-fungus associations. In:Insect-Fungus Interactions (eds N. Wilding, N. M. Collins, P. M. Hammond & J. F. Webber) pp. 145–59. Academic Press, London.

    Google Scholar 

  • Francke-Grosmann H. (1956) Hautdrüsen als Träger der Pilzsymbiose bei Ambrosiakäfern.Z. Morph. Ökol. Tiere. 45: 275–308.

    Article  Google Scholar 

  • Francke-Grosmann H. (1967) Ectosymbiosis in wood-inhabiting insects. In:Symbiosis, vol. 2 (ed.) S. M. Henry) pp. 141–205. Academic Press, New York.

    Google Scholar 

  • French J. R. J. &Roeper R. A. (1972) Interactions of the ambrosia beetle,Xyleborus dispar (Coleoptera: Scolytidae), with its symbiotic fungusAmbrosiella hartigii (fungi imperfecti).Can. Entomol. 104: 1635–41.

    Google Scholar 

  • Haanstad J. O. &Norris D. M. (1985) Microbial symbiotes of the ambrosia beetleXyloterinus politus.Microbial. Ecol. 11: 267–76.

    Article  Google Scholar 

  • Happ G. M., Happ C. M. &Barras S. J. (1971) Fine structure of the prothoracic mycangium, a chamber for the culture of symbiotic fungi in the southern pine beetle,Dendroctonus frontalis.Tissue Cell 3: 295–308.

    Google Scholar 

  • Happ G. M., Happ C. M. &French J. R. J. (1976). Ultrastructure of the mesonotal mycangium of an ambrosia beetle,Xyleborus dispar (F.) (Coleoptera: Scolytidae).Int. J. Insect Morphol. Embryol. 5: 381–91.

    Google Scholar 

  • Iizuka H. &Goto S. (1973)Identification Methods of Yeasts, 2nd edn. University of Tokyo Press, Tokyo (in Japanese).

    Google Scholar 

  • Kinuura H., Hijii N. &Kanamitsu K. (1991) Symbiotic fungi associated with the ambrosia beetle,Scolytoplatypus mikado Blandford (Coleoptera: Scolytidae): Succession of the flora and fungal phases in the gallery system and the mycangium in relation to the developmental stages of the beetle.J. Jpn. For. Soc. 73: 197–205.

    Google Scholar 

  • Nakashima T. (1971) Notes on the associated fungi and the mycetangia of the ambrosia beetle,Crossotarsus niponicus Blandford (Coleoptera: Platypodidae).Appl. Entomol. Zool. 6: 131–7.

    Google Scholar 

  • Nakashima T. (1975) Several types of the mycetangia found in platypodid ambrosia beetles (Coleoptera: Platypodidae).Insecta Matsum. New Ser. 7: 1–69.

    Google Scholar 

  • Nakashima T. (1979) Notes on the time when the new female adults of the ambrosia beetleCrossotarsus niponicus Blandford (Coleoptera: Platypodidae) harvest their symbiotic fungi into their mycetangia.Insecta Matsum. New Ser. 17: 1–19.

    Google Scholar 

  • Nakashima T., Iizuka T., Ogura K., Maeda M. &Tanaka T. (1982) Isolation of some microorganisms associated with five species of ambrosia beetles and two kinds of antibiotics produced by Xv-3 strain in these isolates.J. Fac. Agric. Hokkaido Univ. 61: 60–72.

    CAS  Google Scholar 

  • Nakashima T., Goto C. &Iizuka T. (1987) The primary and auxiliary ambrosia fungi isolated from the ambrosia beetles,Scolytoplatypus shogun Blandford (Coleoptera: Scolytidae) andCrossotarsus niponicus Blandford (Coleoptera: Platypodidae).J. Fac. Agric. Hokkaido Univ. 63: 185–208.

    Google Scholar 

  • Norris D. M. (1979) The mutualistic fungi of the Xyleborini beetles. In:Insect-Fungus Symbiosis: Nutrition, Mutualism, and Commensalism (ed. L. R. Batra) pp. 53–63. John Wiley & Sons, New York.

    Google Scholar 

  • Paine T. D. &Birch M. C. (1983) Acquisition and maintenance of mycangial fungi byDendroctonus brevicomis Leconte (Coleoptera: Scolytidae).Envir. Entomol. 12: 1384–6.

    Google Scholar 

  • Schneider I. A. &Rudinsky J. A. (1969) Mycetangial glands and their seasonal changes inGnathotrichus retusus andG. sulcatus.Ann. Entomol. Soc. Am. 62: 39–43.

    Google Scholar 

  • Whitney H. S. (1971) Association ofDendroctonus ponderosae (Coleoptera: Scolytidae) with blue stain fungi and yeasts during brood development in lodgepole pine.Can. Entomol. 103: 1495–1503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kajimura, H., Hijii, N. Dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle,Xylosandrus mutilatus (Blandford) (Coleoptera: Scolytidae) in relation to its life history. Ecol. Res. 7, 107–117 (1992). https://doi.org/10.1007/BF02348489

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348489

Key words

Navigation