Skip to main content
Log in

Differential role of leptin receptors at the hypothalamic paraventricular nucleus in tonic regulation of food intake and cardiovascular functions

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Leptin plays an important role in the central regulation of body weight and arterial pressure via activation of leptin receptors (Ob-Rs) in the hypothalamic area, including the hypothalamic paraventricular nucleus (PVN). The present study was undertaken to investigate whether endogenous leptin in the PVN plays a dual role in the tonic regulation of body weight and arterial pressure. Adult, male normal-weight Sprague-Dawley rats, which were anesthetized and maintained with propofol, were used. A direct bilateral microinjection into the PVN of an antisense oligonucleotide against Ob-R mRNA (ASON1, 50 pmol) significantly increased the daily food intake and body weight gain, effects which lasted for at least 14 days. The same treatment, on the other hand, had no appreciable effect on the basal mean systemic arterial pressure (SAP), heart rate (HR), or power density of the vasomotor components of SAP signals, the experimental index of neurogenic sympathetic vasomotor tone. ASON1 treatment also exerted an insignificant effect on the baroreceptor reflex control of HR. Western blot analysis revealed that a bilateral microinjection into the PVN of ASON1 (50 pmol) significantly decreased the expression of the Ob-R protein in the hypothalamus. The same treatment also attenuated hypertension, tachycardia, and the increase in the power density of the vasomotor components of the SAP signals induced by exogenous bilateral application of leptin (5 or 50 ng) into the PVN. Control application of sense (SON, 50 pmol) or a scrambled antisense Ob-R oligonucleotide (ASON2, 50 pmol) into the bilateral PVN promoted no discernible effect on Ob-R protein expression in the hypothalamus, on daily food intake, or on cardiovascular performance. Our results indicate that whereas the Ob-Rs in the PVN are involved in the tonic regulation of food intake, they might not be actively involved in the tonic regulation of cardiovascular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, Matsuoka N, Hayashi T, Hosoda K, Inoue G, Yoshimasa Y, Nakao K. Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest 105:1243–1252;2000.

    PubMed  Google Scholar 

  2. Banks AS, Davis SM, Bates SH, Myers MG. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275:14563–14572;2000.

    Article  PubMed  Google Scholar 

  3. Barrachina MD, Martinez V, Wang L, Wei JY, Tache Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 94:10455–10460;1997.

    Article  PubMed  Google Scholar 

  4. Bjørbæk C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 272:32686–32695;1997.

    Article  PubMed  Google Scholar 

  5. Calapai G, Corica F, Allegra A, Corsonello A, Sautebia L, De Gregorio T, Di Rosa M, Costantino G, Buemi M, Caputi AP. Effects of intracerebroventricular leptin administration on food intake, body weight gain and diencephalic nitric oxide synthase activity in the mouse. Br J Pharmacol 125:798–802;1998.

    Article  PubMed  Google Scholar 

  6. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549;1995.

    PubMed  Google Scholar 

  7. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet 348:159–161;1996.

    Article  PubMed  Google Scholar 

  8. Chan JYH, Chen WC, Lee HY, Chan SHH. Elevated Fos expression in the nucleus tractus solitarii is associated with reduced baroreflex response in spontaneously hypertensive rats. Hypertension 32:939–944;1998.

    PubMed  Google Scholar 

  9. Chan JYH, Chen WC, Lee HY, Chang TJ, Chan SHH. Phosphorylation of transcription factor cyclic-AMP response element binding protein mediates c-fos induction elicited by sustained hypertension in rat nucleus tractus solitarii. Neuroscience 88:1119–1122;1999.

    Article  Google Scholar 

  10. Chan JYH, Wang LL, Lee SY, Chan SHH. Augmented upregulation by c-fos of angiotensin subtype 1 receptor in nucleus tractus solitarii of spontaneously hypertensive rats. Hypertension 40:335–341;2002.

    Article  PubMed  Google Scholar 

  11. Chan JYH, Wang LL, Wu KLH, Chan SHH. Reduced functional expression and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation 104:1676–1681;2001.

    PubMed  Google Scholar 

  12. Chang AYW, Chan JYH, Kao FJ, Huang CM, Chan SHH. Engagement of inducible nitric oxide synthase at the rostral ventrolateral medulla during mevinphos intoxication in the rat. J Biomed Sci 8:475–483;2001.

    Article  PubMed  Google Scholar 

  13. Chen YL, Chan SHH, Chan JYH. Participation of galanin in baroreflex inhibition of heart rate by hypothalamic PVN in rat. Am J Physiol 271:H1823-H1828;1996a.

    PubMed  Google Scholar 

  14. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene indb/db mice. Cell 84:491–495;1996b.

    Article  PubMed  Google Scholar 

  15. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138:4489–4492;1997.

    Article  PubMed  Google Scholar 

  16. Chiasson BJ, Armstrong JN, Hooper ML, Murphy PR, Robertson HA. The application of antisense oligonucleotide technology to the brain: Some pitfalls. Cell Mol Neurobiol 14:507–521;1994.

    Article  PubMed  Google Scholar 

  17. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P, Mombaerts P, Friedman JM. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 108:1113–1121;2001.

    Article  PubMed  Google Scholar 

  18. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Myce MR, Ohannesian JP, Marco CC, McKee LJ, Baure TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295;1996.

    Article  PubMed  Google Scholar 

  19. Correia MLG, Morgan DA, Mitchell JL, Sivitz WI, Mark AL, Haynes WG. Role of corticotrophin-releasing factor in effects of leptin on sympathetic nerve activity and arterial pressure. Hypertension 38:384–388;2001a.

    PubMed  Google Scholar 

  20. Correia MLG, Morgan DA, Sivitz WI, Mark AL, Haynes WG. Leptin acts in the central nervous system to produce dose-dependent changes in arterial pressure. Hypertension 37:936–942;2001b.

    PubMed  Google Scholar 

  21. Cusin I, Rohner-Jeanrenaud F, Stricker-Krongrad A, Jeanrenaud B. The weight-reducing effect of an intracerebroventricular bolus injection of leptin in genetically obesefa/fa rats. Reduced sensitivity compared with lean animals. Diabetes 45:1446–1450;1996.

    PubMed  Google Scholar 

  22. Dunbar JC, Hu Y, Lu H. Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes 46:2040–2043;1997.

    PubMed  Google Scholar 

  23. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behavior 74:703–708;2001.

    Article  Google Scholar 

  24. Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB. Leptin activates distinct projections from the dorsomedial and ventrolateral hypothalamic nuclei. Proc Natl Acad Sci USA 95:741–746;1998a.

    Article  PubMed  Google Scholar 

  25. Elmquist JK, Ahima RS, Maratos-Flier E, Flier JS, Saper CB. Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 138:839–842;1997.

    Article  PubMed  Google Scholar 

  26. Elmquist JK, Maratos-Flier E, Saper CB, Flier JS. Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci 1:445–450;1998b.

    Article  PubMed  Google Scholar 

  27. Flier JS, Maratos-Flier E. Obesity and the hypothalamus: Novel peptides for new pathways. Cell 92:437–440;1998.

    Article  PubMed  Google Scholar 

  28. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395:763–770;1998.

    Article  PubMed  Google Scholar 

  29. Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci 18:559–572;1998.

    PubMed  Google Scholar 

  30. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546;1995.

    PubMed  Google Scholar 

  31. Hall JE, Hildebrandt DA, Kuo J. Obesity hypertension: Role of leptin and sympathetic nervous system. Am J Hypertens 14:103S-115S;2001.

    Article  PubMed  Google Scholar 

  32. Haynes WG, Morgan DA, Djalali A, Sivitz WI, Mark AL. Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 33:542–547;1999.

    PubMed  Google Scholar 

  33. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 100:270–278;1997.

    PubMed  Google Scholar 

  34. Iida M, Murakami T, Ishida K, Mizuno A, Kuwajima M, Shima K. Phenotype-linked amino acid alteration in leptin receptor cDNA form Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 222:19–26;1996.

    Article  PubMed  Google Scholar 

  35. Inui A. Feeding and body-weight regulation by hypothalamic neuropeptides — mediation of the actions of leptin. Trends Neurosci 22:62–67;1999.

    Article  PubMed  Google Scholar 

  36. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76;1998.

    Article  PubMed  Google Scholar 

  37. Kuo TBJ, Yang CCH, Chan SHH. Selective activation of vasomotor component of SAP spectrum by nucleus reticularis ventrolateralis in rats. Am J Physiol 272:H458-H492;1997.

    Google Scholar 

  38. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635;1996.

    Article  PubMed  Google Scholar 

  39. Len WB, Chan SHH, Chan JYH. Parabrachial nucleus induces suppression of baroreflex bradycardia by the release of glutamate in the rostral ventrolateral medulla of the rat. J Biomed Sci 7:401–411;2000.

    PubMed  Google Scholar 

  40. Mark AL, Correia M, Morgan DA, Shaffer RA, Haynes WG. Obesity-induced hypertension. New concepts from the emerging biology of obesity. Hypertension 33:537–541;1999a.

    PubMed  Google Scholar 

  41. Mark AL, Shaffer RA, Correia MLG, Morgan DA, Sigmund CD, Haynes WG. Contrasting blood pressure effects of obesity in leptin-deficientob/ob mice and agouti yellow obese mice. J Hypertens 17:1949–1953;1999b.

    Article  PubMed  Google Scholar 

  42. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Morgan PJ, Trayhurn P. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol 8:733–735;1996a.

    Article  PubMed  Google Scholar 

  43. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett 387:113–116;1996b.

    Article  PubMed  Google Scholar 

  44. Muzzin P, Cusin I, Charnay Y, Rohner-Jeanrenaud F. Single intracerebroventricular bolus injection of a recombinant adenovirus expressing leptin results in reduction of food intake and body weight in both lean and obese Zuckerfa/fa rats. Regul Pept 92:57–64;2000.

    Article  PubMed  Google Scholar 

  45. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, ed 4. San Diego, Academic Press, 1998.

    Google Scholar 

  46. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, Hess JF. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19;1996.

    Article  PubMed  Google Scholar 

  47. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98:1101–1106;1996.

    PubMed  Google Scholar 

  48. Shek EW, Kim PK, Hall JE. Adrenergic blockade prevents leptin-induced hypertension. FASEB J 13:A456;1999.

  49. Shirasaka TB, Nakazato M, Matshkura S, Takasaki M, Kannan H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 177:R1780-R1785;1999.

    Google Scholar 

  50. Stephens TW, Basinski M, Bristow PK, BueValleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsiung HM, Kriauciunas A, MacKellar W, Rosteck PR Jr, Schoner B, Smith D, Tinsley FC, Zhang XY, Heiman M. The role of neuropeptide Y in the antiobesity action of theobese gene product. Nature 377:530–532;1995.

    PubMed  Google Scholar 

  51. Tang-Christensen M, Havel PJ, Jacobs RR, Larsen PJ, Cameron JL. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J Clin Endocrinol Metab 84:711–717;1999.

    Article  PubMed  Google Scholar 

  52. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271;1995.

    Article  PubMed  Google Scholar 

  53. Wang LL, Chan SHH, Chan JYH. Fos protein is required for the re-expression of angiotensin II type 1 receptors in the nucleus tractus solitarii after baroreceptor activation in the rat. Neuroscience 103:143–151;2001.

    Article  PubMed  Google Scholar 

  54. Woods AJ, Stock MJ. Leptin activation in hypothalamus. Nature 381:745;1996.

    Article  PubMed  Google Scholar 

  55. Yang CCH, Kuo TBJ, Chan SHH. Auto- and cross-spectral analysis of cardiovascular fluctuations during pentobarbital anesthesia in the rat. Am J Physiol 270:H575-H582;1996.

    PubMed  Google Scholar 

  56. Yang CH, Shyr MH, Kuo TBJ, Tan PPC, Chan SHH. Effects of propofol on nociceptive response and power spectra of electroencephalographic and systemic arterial pressure signals in the rat: Correlation with plasma concentration. J Pharmacol Exp Ther 275:1568–1574;1995.

    PubMed  Google Scholar 

  57. Yarnell DO, Knight DS, Hamilton K, Tulp O, Tso P. Localization of leptin receptor immunoreactivity in the lean and obese Zucker rat brain. Brain Res 785:80–90;1998.

    PubMed  Google Scholar 

  58. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432;1994.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, CD., Au, LC. & Chen, J.Y.H. Differential role of leptin receptors at the hypothalamic paraventricular nucleus in tonic regulation of food intake and cardiovascular functions. J Biomed Sci 10, 367–378 (2003). https://doi.org/10.1007/BF02256428

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256428

Key Words

Navigation